Principio del buen orden

Versión para impresión

Cualquier conjunto no vacío S de enteros positivos contiene un elemento mínimo. Es decir, existe a en S tal que, para todo b en S, se da la desigualdad ab.

El el lector encontrará muy convincente el siguiente argumento sobre la veracidad del principio del buen orden:

S es no vacío. Luego tiene un número, digamos a. Ahora consideremos el conjunto {0,1,2,,a} y marquemos los elementos de este conjunto que pertenecen también a S (de seguro a quedará marcado). Entonces el primer elemento marcado es el mínimo buscado. (De aquí que también se diga a veces "tiene un primer elemento" en vez de "un elemento mínimo".)

Nota: Este argumento no es una demostración formal, pero ilustra el tipo de argumento que se puede hacer con conjuntos finitos. Es un argumento --podríamos decir-- visual, que plantea la ejecución de un procedimiento de etiquetado (o marcado o tachado) sobre los elementos de un conjunto con una regla no ambigua.

Ver también: 
Inducción matemática