Se construye un polígono regular de $n$ lados ($n\geq 3$) y se enumeran sus vértices del 1 al $n$. Se trazan todas las diagonales del polígono. Demostrar que si $n$ es impar, se puede asignar a cada lado y a cada diagonal un número entero del 1 al $n$, tal que se cumplan simultáneamente las siguientes dos condiciones:
- (a) El número asignado a cada lado o diagonal es distinto a los asignados a los vértices que une.
- (b) Para cada vértice, todos los lados y diagonales que compartan dicho vértice
tienen números diferentes.