Avanzado

Problemas de nivel nacional.
Problema

P6 OMM 2006. Problema con números surtidos

Enviado por jmd el 29 de Julio de 2010 - 08:34.

Sea $n$ la suma de los dígitos de un entero positivo $A$. Decimos que $A$ es “surtido” si cada uno de los enteros $1,2,\ldots,n$ es suma de dígitos de $A$

  • Demuestra que si $1,2,\ldots,8$ son sumas de dígitos de un entero $A$ entonces $A$ es surtido.
  • Si $1,2,\ldots,7$ son sumas de dígitos de un entero $A$, ¿es $A$ necesariamente surtido?

Nota: El número 117 no es surtido pues sólo $1=1, 2 = 1+1, 7 = 7, 8 = 1 + 7, 9 = 1 + 1 + 7$ se pueden escribir como suma de dígitos de 117.
 

Problema

P6 OMM 2005. Un punto en la paralela a la bisectriz

Enviado por jmd el 29 de Julio de 2010 - 08:13.

Sea $ABC$ un triángulo y $AD$ la bisectriz del ángulo $\angle BAC$, con $D$ sobre $BC$. Sea $E$ un punto sobre el segmento $BC$ tal que $BD=EC$. Por $E$ traza la recta $l$ paralela a $AD$ y considera un punto $P$ sobre $l$ y dentro del triángulo. Sea $G$ el punto donde la recta $BP$ corta al lado $AC$ y sea $F$ el punto donde la recta $CP$ corta al lado $AB$. Muestra que $BF=CG$)

Problema

P4 OMM 2005. Eliminar (ternas aritméticas) reordenando

Enviado por jmd el 29 de Julio de 2010 - 08:08.

Decimos que una lista de números $a_1,a_2,\ldots,a_m$ contiene una terna aritmética $a_i,a_j,a_k$, si $i<j< k$ y $2a_j = a_i + a_k$. Por ejemplo, 8,1,5,2,7 tiene una terna aritmética (8,5 y 2) pero 8,1,2,5,7 no. Sea $ n $ un entero positivo. Muestra que los números $1,2,\ldots,n$ se pueden reordenar en una lista que no contenga ternas aritméticas.

Problema

P5 OMM 2005. Con cualquiera de las restantes se completa

Enviado por jmd el 29 de Julio de 2010 - 08:04.

Sea $N$ un entero mayor que 1. En cierta baraja de $N^3$ cartas, cada carta está pintada de uno de $N$ colores distintos, tiene dibujada una de $N$ posibles figuras y tiene escrito un número entero del 1 al $N$ (no hay dos cartas idénticas). Una colección de cartas de la baraja se llama completa si tiene cartas de todos los colores, o si entre sus cartas aparecen todas la figuras o todos los números. ¿Cuántas colecciones no completas tienen la propiedad de que, al añadir cualquier otra carta de la baraja, ya se vuelven completas?
 

Problema

P2 OMM 2005. Matrices n-balanceadas

Enviado por jmd el 29 de Julio de 2010 - 07:33.

Dadas varias cuadrículas del mismo tamaño con números escritos en sus casillas, su suma se efectúa casilla por casilla. Por ejemplo:

Dado un entero positivo $N$, diremos que una cuadrícula es $N$-balanceada si tiene números enteros escritos en sus casillas y si la diferencia entre los números escritos en cualesquiera dos casillas que comparten un lado es menor o igual que $N$.

Problema

P6 OMM 2004. Cambios de dirección en cuadrícula 2004X2004

Enviado por jmd el 24 de Julio de 2010 - 11:03.

¿Cuál es el mayor número posible de cambios de dirección en un recorrido sobre las líneas de una cuadrícula de $2004\times 2004$ casillas, si el recorrido no pasa dos veces por el mismo lugar?

Problema

P5 OMM 2004. Dos circunferencias

Enviado por jmd el 24 de Julio de 2010 - 10:59.

Sean $\alpha$ y $\beta$ dos circunferencias tales que el centro $O$ de $\beta$ está sobre $\alpha$. Sean $C$ y $D$ los dos puntos de intersección de las circunferencias. Se toman un punto $A$ sobre $\alpha$ y un punto $B$ sobre $\beta$ tales que $AC$ es tangente a $\beta$ en $C$ y $BC$ es tangente a $\alpha$ en el mismo punto $C$. El segmento $AB$ corta de nuevo a $\beta$ en $E$ y ese mismo segmento corta de nuevo a $\alpha$ en $F$. La recta $CE$ vuelve a cortar a $\alpha$ en $G$ y la recta $CF$ corta a la recta $GD$ en $H$. Prueba que el punto de intersección de $GO$ y $EH$ es el centro de la circunferencia circunscrita al triángulo $DEF$.

Problema

P4 OMM 2004. Número de equipos en un torneo

Enviado por jmd el 24 de Julio de 2010 - 10:47.

Al final de un torneo de futbol en el que cada par de equipos jugaron entre si exactamente una vez y donde no hubo empates, se observó que para cualesquiera tres equipos $A, B, C,$ si $A$ le ganó a $B$ y $B$ le ganó a $C$ entonces $A$ le ganó a $C$. Cada equipo calculó la diferencia (positiva) entre el número de partidos que ganó y el número de partidos que perdió. La suma de todas estas diferencias resultó ser 5000. ¿Cuántos equipos participaron en el torneo? Encuentra todas las respuestas posibles.

Problema

P3 OMM 2004. Configuración con incírculo y punto medio

Enviado por jmd el 24 de Julio de 2010 - 10:39.

Sean $Z,Y$ los puntos de tangencia del incírculo del triángulo $ABC$ con los lados $AB,CA,$ respectivamente. La paralela a $YZ$ por el punto medio $M$ del lado $BC,$ corta a $CA$ en $N$. Sea $L$ el punto sobre $CA$ tal que $NL = AB$ (y $L$ del mismo lado de $N$ que $A$). La recta $ML$ corta a $AB$ en $K$. Muestra que $KA = NC$.

Problema

P6 OMM 2002. Doblez en un rectángulo

Enviado por jmd el 24 de Julio de 2010 - 08:12.

Sea $ABCD$ un cuadrilátero con $AD$ paralelo a $BC$, los ángulos en $A$ y $B$ rectos y tal que el ángulo $CMD$ es recto, donde $M$ es el punto medio de $AB$. Sean $K$ el pie de la perpendicular a $CD$ que pasa por $M$, $P$ el punto de intersección de $AK$ con $BD$ y $Q$ el punto de intersección de $BK$ con $AC$. Demuestra que el ángulo $AKB$ es recto y que $$\frac{KP}{PA} + \frac{KQ}{QB} = 1$$
 

Distribuir contenido