Publicaciones Recientes

Problema

Linea media bisectriz y cuerda

Enviado por jmd el 29 de Septiembre de 2008 - 06:55.

La cuerda del incírculo del triángulo ABC, definida por los puntos de tangencia P y Q en los lados b y c respectivamente, concurre con la línea media de los lados a y b y la bisectriz del ángulo B.

Noticia

Siguiente entrenamiento, viernes 26, CBTis 103

Enviado por jmd el 24 de Septiembre de 2008 - 12:08.

Se aprovechará para participar en el



Entrada de blog

Consideraciones metacognitivas sobre Problem Solving

Enviado por jmd el 15 de Septiembre de 2008 - 21:21.

Consideremos las siguientes proposiciones:

Proposición 1: En cualquier conjunto de $n+1$ números naturales siempre hay dos cuya diferencia es múltiplo de $n$.

Proposición 2: Cualquier número natural $n$ tiene un múltiplo $kn$ formado únicamente por ceros y unos (en su representación usual del sistema decimal).

¿Qué relación hay entre estas dos afirmaciones? Lo primero que se nota es que ambas contienen la frase "múltiplo de $n$"

Recordemos que la primera afirmación se demuestra por el principio de pichoneras: hay dos con el mismo residuo al dividir entre n, por lo tanto...

Problema

metodo chino del resto y ptf

Enviado por jmd el 14 de Septiembre de 2008 - 20:09.

Sea $f(n)=5n^{13}+13n^5+9an$. Encontrar el mínimo entero positivo$ a $ para el cual $f(n)$ es divisible entre $65$ para cada entero $ n $.

Entrada de blog

Desordenamientos

Enviado por jmd el 13 de Septiembre de 2008 - 15:00.

Desordenamientos (derangement)

Dentro de las aplicaciones del principio de inclusión-exclusión está el conteo de permutaciones con posiciones restringidas. Un caso especial de éstas son los desordenamientos, en los cuales se impone la restricción de que ningún elemento esté en su lugar original.

Recordemos que una permutación sobre $n$ elementos es una biyección $f:\{1,2,...,n\}\rightarrow\{1,2,...,n\}$. Un desordenamiento en combinatoria es una permutación en la cual ningún elemento está en su lugar. Formalmente, un desordenamiento es una biyección $f$ de un conjunto finito $S$ en sí mismo sin puntos fijos (para toda $s$ de $S, f(s)$ es diferente de $s$).

Noticia

Entrenamiento el 19, en el CETis 109

Enviado por jmd el 13 de Septiembre de 2008 - 01:57.

El siguiente entrenamiento será en las instalaciones del CETis 109 los días 19, 20 y 21 de septiembre del año en curso. De la manera acostumbrada, el viernes 19 inicia a las 4pm y continua el sabado con el horario que acuerden con los entrenadores, etc. El entrenamiento estará a cargo de los jóvenes ex-olímpicos que el profesor Carlos Alcocer designe, y pues los temas sólo puedo sugerirlos: un tema básico que no se ha cubierto es el de combinatoria,...

Problema

Menelao en monterrey 97

Enviado por jmd el 12 de Septiembre de 2008 - 21:40.

En un triángulo ABC, P y P' son dos puntos sobre el lado BC, Q sobre CA y R sobre AB, de tal manera que AR/RB = BP/PC = CQ/QA = CP'/P'B. Sea G el centroide del triángulo ABC y K el punto de intersección de AP' con RQ. Demostrar que P, G y K son colineales.

Problema

Método del residuo chino

Enviado por jmd el 11 de Septiembre de 2008 - 05:51.

Una compañía de n soldados es tal que:

– n es un número capicúa. (Se lee igual al derecho y al revés. Ejemplo:15651, 9436349.) – Si los soldados se forman de 3 en 3, quedan 2 soldados en la última fila; de 4 en 4, quedan 3 soldados en la última fila; de 5 en 5, quedan 5 soldados en la última fila.

Hallar el menor n que cumple las condiciones y demostrar que hay una infinidad de valores n que las satisfacen.

Entrada de blog

Método del residuo chino para sistemas de congruencias

Enviado por jmd el 11 de Septiembre de 2008 - 01:25.

Una compañía de n soldados es tal que:
– n es un número capicúa. (Se lee igual al derecho y al revés. Ejemplo:15651, 9436349.)
– Si los soldados se forman de 3 en 3, quedan 2 soldados en la última fila; de 4 en 4, quedan 3 soldados en la última fila; de 5 en 5, quedan 5 soldados en la última fila.

Hallar el menor n que cumple las condiciones y demostrar que hay una infinidad de valores n que las satisfacen.

Solución

El problema se deja modelar con el sistema de congruencias siguiente:

$n=2(mod3)$
$n=3(mod4)$
$n=0(mod5)$

Entrada de blog

El cocinero chino: un problema diofantino

Enviado por jmd el 9 de Septiembre de 2008 - 16:36.

El enunciado del siguiente problema es clásico. El problema se denomina "el cocinero chino". Se usa para ilustrar el teorema chino del residuo.

Distribuir contenido