a) Demostrar que para todas las parejas $a,b$ de números reales se cumplen las desigualdades:
$$(a^2+1)(b^2+1)\geq(ab+1)^2$$
$$(a^2+1)(b^2+1)\geq(a+b)^2$$
b) Decir, con prueba, para qué valores se cumple la igualdad en cada una de las desigualdades anteriores.
c) Encontrar todas las soluciones $(x,y)$ en números reales, de la ecuación $(x^2+1)(y^2+1)=(xy+1)(x+y)$
Dos desigualdades y una ecuación
»
- Inicie sesión o regístrese para enviar comentarios