Blogs
Un problema viral
Es bastante inusual que un problema de matemáticas de concurso llegue a la prensa diaria. Por ello es que me sorprendió que haya aparecido en El Universal el siguiente problema de matemáticas (aunque más bien es de lógica) en estos días de abril de 2015. (La nota decía, además, que el problema es de una olimpiada de Singapur --creo-- para niños de 14 años y se había vuelto viral en la WWW.)
Identidad notabilísima --y su determinante
Me he encontrado en estos días con la notabilísima identidad algebraica (para a,b,c reales):
$$abc+(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)$$
Su rasgo distintivo radica --creo-- en que el lado derecho refleja el izquierdo pero intercambiando la suma por el producto y éste por aquélla. Es decir, lo que en el lado izquierdo es producto en el derecho es suma y la suma en el izquierdo es producto en el derecho.
Seguir la regla y "ver como" en álgebra
Ahora que el 2014 se ha quedado atrás y el puente Guadalupe Reyes se terminó es buen momento para mirar hacia el futuro. Y desearle a toda la comunidad de usuarios de MaTeTaM un 2015 de eficaces aprendizajes en el problem solving de matemáticas.
Y, bueno, de paso voy a plantear la tesis de que, en el aprendizaje de las matemáticas, primero se aprende el procedimiento y sólo después de ello se aprende el concepto. Ilustro con un ejemplo de desigualdades.
Riesgo moral y agencia --en educación superior
En este fin de 2014 en que la Academia de Ciencias sueca otorgó el premio Nobel de economía a Jean Tirole, puede que sea de alguna utilidad comentar sobre su enfoque (la Teoría de la Agencia) al analizar los mercados y su regulación. (Añado una discusión sobre la situación de la educación superior vista desde la perspectiva de esta importante teoría.)
Desigualdad de Titu --una demostración booteable
Voy a presentar en este post una forma de demostrar la desigualdad de Titu Andreescu que recuerda los procesos de bootstraping utilizados en computación --y otras áreas de la ciencia. El término bootstrapping está inspirado --verosímilmente-- en Las Sorprendentes Aventuras del Baron de Munchausen. (Una serie de narraciones donde el héroe realiza tareas imposibles.) Atacho una traducción al español.
Examen de la XXVIII OMM. Segundo día.
A continuación el examen del segundo día de la XVIII Olimpiada Mexicana de Matemáticas que se está aplicando a los concursantes el día de hoy en Toluca.
Problema 4 de la XXVIII OMM Segundo Día. Toluca 2014
Problema 5 de la XXVIII OMM Segundo Día. Toluca 2014
Problema 6 de la XXVIII OMM Segundo Día. Toluca 2014
Sobre el problema 3 del selectivo final
El problema y la solución de Germán
Cuadrilátero cíclico: más instancias de uso
En este post voy a recomendar el estudio de algunos materiales sobre cuadriláteros cíclicos a quienes se están preparando para el nacional. De paso intercalo dos instancias de su uso.
En un post anterior --dedicado a los criterios de reconocimiento de los cuadriláteros cíclicos-- hemos destacado la importancia de esta herramienta en el problem solving de geometría y discutimos varias instancias de uso asociadas a demostraciones del teorema de la mariposa.
Selectivo 2 OMM_Tam_2014
Enseguida presento los cuatro problemas del segundo examen selectivo para la preselección Tamaulipas OMM 2014. Añado las soluciones al 2 y al 4.
Problema 1. En un cuadrilátero ABCD convexo se trazan las perpendiculares desde cada vértice a la diagonal que no pasa por él. Demostrar que los cuatro puntos de intersección de cada perpendicular con su correspondiente diagonal forman un cuadrilátero semejante al dado.
Primos y divisibilidad: dos problemas
Voy a comentar en este post las soluciones de los problemas 1 y 2 del primer selectivo para la preselección OMM Tamaulipas 2014. Espero que sirva como feedback para los preseleccionados que no los resolvieron o los resolvieron de otra forma. (Vaya una felicitación para Camilo por su excelente elección de los problemas.)
Problema 1. Sean m,n enteros positivos tales que $m^2+n^2$ es múltiplo de 3. Pruebe que m y n son también múltiplos de 3.
Comentario: