IMO 1995
Problema
Geometría analítica, un legado cartesiano
Enviado por jmd el 16 de Enero de 2009 - 10:56.
Sean $A, B, C, D$ cuatro puntos distintos sobre una recta, en ese orden. Los círculos de diámetros $AC$ y $BD$ se intersectan en los puntos $X$ y $Y$. La recta $XY$ corta a $BC$ en el punto $Z$. Sea $P$ un punto sobre la recta $XY$, y diferente de $Z$. La recta $CP$ intersecta al círculo de diámetro $AC$ en los puntos $C$ y $M$, y la recta $BP$ intersecta el círculo de diámetro $BD$ en los puntos $B$ y $N$. Demostrar que las rectas $AM$, $DN$ y $XY$ son concurrentes.