Regional OMM Tamaulipas 2009
Trapecio circunscrito
Un trapecio $ABCD$, con $AB$ paralela a $CD$, está circunscrito a una circunferencia (los 4 lados del trapecio son tangentes a la circunferencia) con centro $O.$ Sean $M, N, P, Q$ los puntos de tangencia de la circunferencia con los lados $AB, BC, CD, DA,$ respectivamente. Demuestra que $AQ\cdot QD = BN\cdot NC.$
El 3 de Regiones
Sea $ ABC $ un triángulo rectángulo en $A$. La circunferencia con diámetro $AB$ corta a $ BC $ en $D$, y la circunferencia que pasa por $A, D,$ y el punto medio $O$ de $AB,$ corta a $CA$ en $P$ y corta nuevamente a $ BC $ en $Q$. Demuestra que $PQOA$ es un rectángulo.
Domingo Siete y los tazos de Pokemon
Dominguito Siete se reune cada domingo con sus amigos y lleva tazos de Pokemon. Cuando el número de tazos es múltiplo de 7, los reparte a partes iguales entre sus 6 amigos y él. De otra manera no reparte, sino que compra más tazos (durante la semana): si el número de tazos es impar, compra 7; y si es par, compra 6 veces la cantidad que tiene más otros 5. Si después de 2 domingos de reunirse con sus 6 amigos, se da cuenta que tiene 41 tazos. ¿Cuántos tenía inicialmente?
Regiones 2009, problema 1
¿De cuántas formas se pueden colocar los números $0,1,2,3,4,5,6$, uno en cada casilla del siguiente panal, sin que haya 2 múltiplos de 3 en casillas adyacentes (i.e., con un lado en común)?
El fácil del Regiones 2009
¿Cuántos números $abcd$ de 4 dígitos distintos, múltiplos de 36 y menores que 4000 son tales que el producto de $ab$ por $cd$ es múltiplo de 7? Nota: el número 1980 $(a=1, b=9,c=8,d=0)$ es menor que 4000, es múltiplo de 36 y es de dígitos distintos, pero no cumple la condición de que $19\cdot{80}$ sea múltiplo de 7.
