Intermedio
P5. Sobreexplotando la configuración del ortocentro con una concurrencia.
Sea $ABC$ un triángulo acutángulo y $H$ su ortocentro. Sea $\Omega$ el circunírculo de $BHC$. Las rectas $AH$ y $AC$ cortan a $\Omega$ en $D \neq H$ y $E\neq C$ respectivamente. Sea $F \neq D$ la segunda intersección de $CD$ con el circuncírculo de $AED$. Demuestra que $AF, \ BC$ y $DE$ concurren.
P2. Sam vs Hugo, monedas en fila
Sam y Hugo juegan con $n$ monedas, todas con $A$ en una cara y $S$ en la otra. Las monedas están puestas en fila sobre la mesa. Sam y Hugo se turnan. En su turno, Sam puede voltear una o más monedas, siempre que no voltee dos adyacentes; mientras Hugo elige exactamente dos monedas adyacentes y las voltea. Al comenzar el juego, todas las monedas muestran $A$. Sam juega primero y gana si todas las monedas muestran $S$ simultáneamente en cualquier momento. Halla todos los $n\geq 1$ con los que Hugo puede evitar que Sam gane.
6. Aplicación del EFR
5. Divisores cuadrados vs el doble
Sea $1=d_1<d_2<\dots<d_k=n$ todos los divisores del entero positivo $n$, donde $k\geq 5$. Determina si exsiste alguna $n$ que cumpla que $$2n=d_3^2+d_4^2+d_5^2$$
3. Una desigualdad, muchas soluciones.
P6. Desigualdades Tamaulipas para un número real
Sean $a$ y $b$ enteros positivos y $c$ un número real positivo tal que $$\frac{a+1}{b+c}=\frac{b}{a}$$
Demuestra que $c \geq 1$.
P5. Revive la Geocombi en un 15-ágono regular
En un círculo, se dibuja una 15-ágono regular y se forman triángulos arbitrarios conectando 3 de sus vértices. ¿Cuántos triángulos no congruentes se pueden dibujar?
P4. 4 números en el 4 del selectivo
Sean $a,b,k$ enteros no negativos y sea $p$ un número primo positivo. Encuentra todas las cuaternas $(a,b,p,k)$ tales que $$a^2+b^2+p^2=2^k$$
P3. Coloreando la recta numérica
Cada número entero de la recta numérica se pinta de rojo o azul según las siguientes reglas:
- El número $1$ es rojo.
- Si $a$ y $b$ son dos números rojos, no necesariamente diferentes, entonces los números $a-b$ y $a + b$ tienen colores diferentes.
Determina el color del número $2025$.
P6. Razones entre cíclicos dobles y pies de perpendicular.
Sea $ABCD$ un cuadrilatero cíclico y $E$ el punto de intersección de sus diagonales. La circunferencia que pasa por los vértices del triángulo $BEC$ corta a la recta $AB$ en $F$ y a la recta $CD$ en $G$. Sea $P$ el pie de la perpendicular desde $A$ sobre la recta $BC$ y sea $Q$ el pie de la perpendicular desde $B$ sobre la recta $AD$. Demuestra que:
$$\frac{AF}{DG}=\frac{AP}{BQ}$$
