Intermedio

Problemas de nivel estatal y similares.
Problema

P4. Las hormigas troll de Lalo

Enviado por Samuel Elias el 27 de Noviembre de 2025 - 16:42.

A Lalo le regalaron una red mágica, como la que se muestra en la figura. La red consta de 20 vértices unidos por algunas aristas. Lalo coloca, de una en una, hormigas en los vértices de la red. Las hormigas caminan sobre las aristas, y al hacerlo, la arista recorrida va desapareciendo. Lalo tiene $n$ hormigas y juega colocándolas de la siguiente manera:

Problema

Número de dos dígitos divisible del 1 al 9 (P4)

Enviado por jesus el 26 de Noviembre de 2025 - 13:47.

Encuentra el menor entero positivo tal que al escribirlo en notación decimal utiliza exactamente dos dígitos distintos y que es divisible entre cada uno de los números del $1$ al $9$.

Nota: Un ejemplo de un número que al escribirlo en notación decimal utiliza exactamente dos dígitos distintos es el $2202022002$.

Problema

P1. Colinealidad en un P1???

Enviado por Samuel Elias el 22 de Noviembre de 2025 - 10:33.

Sea $ABCD$ un paralelogramo. La circunferencia de diámetro $BD$ corta a las rectas $AD$ y $DC$ en los puntos $E$ y $F$ respectivamente distintos de $D$. La recta $EF$ interseca a $BA$ y $BC$ en los puntos $P$ y $Q$ respectivamente. Demuestra que el centro de la circunferencia que pasa por los puntos $B, \ P$ y $Q$ está en la recta $BD$.

Problema

P5. Sobreexplotando la configuración del ortocentro con una concurrencia.

Enviado por Samuel Elias el 23 de Octubre de 2025 - 12:56.

Sea $ABC$ un triángulo acutángulo y $H$ su ortocentro. Sea $\Omega$ el circunírculo de $BHC$. Las rectas $AH$ y $AC$ cortan a $\Omega$ en $D \neq H$ y $E\neq C$ respectivamente. Sea $F \neq D$ la segunda intersección de $CD$ con el circuncírculo de $AED$. Demuestra que $AF, \ BC$ y $DE$ concurren.

Problema

P2. Sam vs Hugo, monedas en fila

Enviado por Samuel Elias el 23 de Octubre de 2025 - 12:44.

Sam y Hugo juegan con $n$ monedas, todas con $A$ en una cara y $S$ en la otra. Las monedas están puestas en fila sobre la mesa. Sam y Hugo se turnan. En su turno, Sam puede voltear una o más monedas, siempre que no voltee dos adyacentes; mientras Hugo elige exactamente dos monedas adyacentes y las voltea. Al comenzar el juego, todas las monedas muestran $A$. Sam juega primero y gana si todas las monedas muestran $S$ simultáneamente en cualquier momento. Halla todos los $n\geq 1$ con los que Hugo puede evitar que Sam gane.

Problema

6. Aplicación del EFR

Enviado por Samuel Elias el 4 de Octubre de 2025 - 17:06.
Sean $C_1$ y $C_2$ dos circunferencias de mismo radio que se intersectan en $B$ y $C$ y sea $M$ el punto medio de $BC$. Sea $G$ un punto en $C_1$ de tal forma que el segmento $CG$ corte a $C_2$ en $E$ y $E$ quede entre $G$ y $C$. Sea $H$ un punto en $C_2$ de tal forma que el segmento $BH$ corte a $C_1$ en $F$ y $F$ quede entre $B$ y $H$. Si $E, \ M, \ F$ son colineales:
 
$i)$ Demuestra que $G, \ H, \ M$ son colineales.
 
$ii)$ Sean $O_1$ y $O_2$ los centros de $C_1$ y $C_2$ respectivamente. Demuestra que $O_1F$ y $O_2E$ son paralelas. 
Problema

5. Divisores cuadrados vs el doble

Enviado por Samuel Elias el 4 de Octubre de 2025 - 17:02.

Sea $1=d_1<d_2<\dots<d_k=n$ todos los divisores del entero positivo $n$, donde $k\geq 5$. Determina si exsiste alguna $n$ que cumpla que $$2n=d_3^2+d_4^2+d_5^2$$

Problema

3. Una desigualdad, muchas soluciones.

Enviado por Samuel Elias el 4 de Octubre de 2025 - 16:58.
Sean $x,y$ números reales positivos tal que $x+y=1$. Demuestra que  $$\frac{x}{y+1} + \frac{y}{x+1} \geq \frac{2}{3}$$
Y encuentra en qué valores de $(x, y)$ se da la igualdad.
Problema

P6. Desigualdades Tamaulipas para un número real

Enviado por Samuel Elias el 22 de Julio de 2025 - 18:32.

Sean $a$ y $b$ enteros positivos y $c$ un número real positivo tal que $$\frac{a+1}{b+c}=\frac{b}{a}$$

Demuestra que $c \geq 1$.

 

Problema

P5. Revive la Geocombi en un 15-ágono regular

Enviado por Samuel Elias el 22 de Julio de 2025 - 18:29.

En un círculo, se dibuja una 15-ágono regular y se forman triángulos arbitrarios conectando 3 de sus vértices. ¿Cuántos triángulos no congruentes se pueden dibujar?

Distribuir contenido