Intermedio

Problemas de nivel estatal y similares.
Problema

Expresado como producto de tres

Enviado por German Puga el 27 de Abril de 2016 - 20:56.

Sea $p_1 , p_2 , p_3 \dots$   la sucesión de números primos ordenados de menor a mayor. Si $n \geq 2$, demuestra que $p_n + p_{n+1}$ se puede expresar como el producto de al menos tres enteros mayores que 1 (no necesariamente distintos). 

Problema

La magia de los números primos

Enviado por German Puga el 27 de Abril de 2016 - 19:50.

Sean $a,b,c,d$ enteros positivos que satisfacen $ ab = cd$ . Muestra que $a+b+c+d$ no es un número primo.

Problema

Muchos 1's

Enviado por German Puga el 27 de Abril de 2016 - 19:46.

Muestra que para todo entero positivo n, primo relativo con 10 existen infinidad de múltiplos de n cuyos dígitos son solo unos. 

Problema

Problema 5. 29a Olimpiada Mexicana de Matemáticas

Enviado por vmp el 25 de Noviembre de 2015 - 13:52.

Sea $I$ el incentro de un triángulo acutángulo $ABC$. La recta $AI$ corta por segunda vez al circuncírculo del triángulo $BIC$ en $E$. Sean $D$ el pie de la altura desde $A$ sobre $BC$ y $J$ la reflexión de $I$ con respecto a $BC$. Muestra que los puntos $D$, $J$ y $E$ son colineales.

 

 

Problema

Problema 4. 29a Olimpiada Mexicana de Matemáticas

Enviado por vmp el 25 de Noviembre de 2015 - 13:47.
Sea $n$ un entero positivo. María escribe en un pizarrón las $n^3$ ternas que se pueden formar tomando tres enteros, no necesariamente distintos, entre $1$ y $n$, incluyéndolos. Después, para cada una de las ternas, María detetermina el mayor (o los mayores, en caso de que haya más de uno) y borra los demás. Por ejemplo, en la terna $(1,3,4)$ borrará los números $1$ y $3$, mientras que en la terna $(1,2,2)$ borrará sólo el número $1$.
 
Muestra que, al terminar este proceso, la cantidad de números que quedan escritos en el pizarrón no puede ser igual al cuadrado de un número entero.
Problema

Problema 3. 29a Olimpiada Mexicana de Matemáticas

Enviado por vmp el 24 de Noviembre de 2015 - 12:23.
Sea $\mathbb{N}=\{1, 2, 3, \ldots \}$ el conjunto de los números enteros positivos. Sea $f:\mathbb{N} \rightarrow \mathbb{N}$ una función, la cual asigna a cada número entero positivo, un número entero positivo. Supón que $f$ satisface las siguientes condiciones:
  1. $f(1)=1$
  2. Para todos $a,b$ enteros positivos, se cumple que
    $$f(a+b+ab)=a+b+f(ab)$$
  3. .
Encuenta el valor de $f(2015)$
Problema

Problema 1. 29a Olimpiada Mexicana de Matemáticas

Enviado por vmp el 24 de Noviembre de 2015 - 12:08.

Sea $ABC$ un triángulo y sea $H$ su ortocentro. Sea $PQ$ un segmento que pasa por $H$ con $P$ en $AB$, $Q$ en $AC$ y tal que $\angle PHB=\angle CHQ$. Finalmente en el ciruncírculo del triángulo $ABC$ considera $M$ el punto medio del arco $BC$ que no contiene a $A$. Muestra que $MP=MQ$.

Problema

Problema 4(C)

Enviado por jmd el 30 de Agosto de 2015 - 09:55.

En una circunferencia se marcan 60 puntos, de los cuales 30 se colorean de rojo, 20 de azul y 10 de verde. La circunferencia queda así dividida en 60 arcos y a cada uno de ellos se les asigna un número de acuerdo a la siguiente regla:

--1 si une un punto rojo con uno verde
--2 si une un punto rojo con uno azul
--3 si une un punto azul con uno verde
--0 si une dos puntos del mismo color

¿Cuál es la mayor suma posible de los números asignados a los arcos? (Justifica tu respuesta.)

Problema

Problema 3(G)

Enviado por jmd el 30 de Agosto de 2015 - 09:52.
Sea $ABC$ un triángulo con $AB\neq{AC}$. Sean $H$ su ortocentro, $O$ su circuncentro y $D$ el punto medio de $BC$. Sea $P$ la intersección de $AO$ y $HD$. Demostrar que los triángulos $AHP$ y $ABC$ tienen el mismo baricentro.
Problema

Elemental de números --pero no trivial

Enviado por jmd el 20 de Junio de 2015 - 13:50.

Hay siete cajas numeradas del 1 al 7 y alineadas. Tú tienes 2015 tarjetas que colocas en las cajas de una por una. La primera tarjeta la colocas en la primera caja, la segunda en la segunda, hasta llegar a la séptima carta la cual colocas en la caja 7. En ese momento empiezas a colocar las tarjetas en la otra dirección colocando la carta 8 en la caja 6, la 9 en la 5, hasta llegar a la carta 13 que colocas en la caja 1. La tarjeta 14 la colocas entonces en la caja 2, y continuas así hasta que cada tarjeta haya sido distribuida. ¿En cuál caja se coloca la última tarjeta? (Justifica tu respuesta.)

Distribuir contenido