Problemas - Álgebra

Problema

Problema 1, IMO 2010

Enviado por jesus el 18 de Julio de 2010 - 14:13.

Determine todas las funciones $f : \mathbb{R} \to \mathbb{R}$ tales que $$f(\lfloor x \rfloor y)= f(x) \lfloor f(y) \rfloor$$ para todos los números $x, y \in \mathbb{R}$. ($\lfloor z\rfloor$ denota el mayor entero que es menor o igual que $z$.)

Problema

Chicas Fresa en Palacio

Enviado por jmd el 16 de Julio de 2010 - 08:57.

Las chicas fresa andan en Palacio de Hierro (sólo les faltan los lentes para irse de vacaciones a Los Cabos):

K: "¿Ya vieron? ¡Qué looser! ¡Son piratas! Nada que ver conmigo, yo quiero unos Carrera, Champion como los de Lady Gaga". 

Problema

P4 OMM 2000. Número de primos hasta el primer compuesto

Enviado por jmd el 13 de Julio de 2010 - 21:20.

Para $a$ y $b$ enteros positivos, no divisibles entre $5$, se construye una lista de números como sigue:

  • El primer número es 5 y,
  • a partir del segundo, cada número se obtiene multiplicando el número que le precede (en la lista) por $a$, y sumándole $b$.

(Por ejemplo, si $a = 2$ y $b = 4$, entonces los primeros tres números de la
lista serán: 5, 14, 32 (pues $14 = 5\cdot2 + 4$ y $32 = 14\cdot2 + 4$.)

¿Cuál es la cantidad máxima de primos que se pueden obtener en la lista antes de obtener el primer número no primo?

Problema

P3 OMM 2000. Regla aditiva --de formación de un conjunto

Enviado por jmd el 13 de Julio de 2010 - 21:07.

Dado un conjunto $A$ de enteros positivos, construimos el conjunto $A'$ poniendo todos los elementos de $A$ y todos los enteros positivos que se pueden obtener de la siguiente manera:

  • Se escogen algunos elementos de $A$, sin repetir, y a cada uno de esos números se le pone el signo $+$ o el signo $-$;
  • luego se suman esos números con signo, y el resultado se pone en $A'$.

Por ejemplo, si $A = {2, 8, 13, 20}$, entonces algunos elementos de $A'$ son 8 y 14 (pues 8 es elemento de $A$, y 14 = 20+2-8).

Problema

P2 OMM 2000. Triángulo de números --con regla simple de formación

Enviado por jmd el 13 de Julio de 2010 - 20:59.

Se construye un triángulo como el de la figura, pero empezando con los números del 1 al 2000.

Problema

P4 OMM 1998. Sumas de dígitos inversos (\times un dígito)

Enviado por jmd el 11 de Julio de 2010 - 12:23.

Encuentre todos los enteros que se escriben como $$\frac{1}{a_1}+\frac{2}{a_2}+\ldots+\frac{9}{a_9}$$ donde $a_1, a_2, \ldots , a_9$ son dígitos distintos de cero que pueden repetir.

Problema

P1 OMM 1998. Números suertudos

Enviado por jmd el 11 de Julio de 2010 - 12:14.

Un número es suertudo si al sumar los cuadrados de sus cifras, y repetir esta operación suficientes veces, obtenemos el número 1. Por ejemplo, 1900 es suertudo, ya que $1900 \rightarrow 82 \rightarrow 68 \rightarrow 100 \rightarrow 1$. Encuentre una infinidad de parejas de enteros consecutivos, donde ambos números sean suertudos.

Problema

P6 OMM 1997. Un quinto más suma de fracciones

Enviado por jmd el 11 de Julio de 2010 - 11:37.

Pruebe que el número 1 se puede escribir de una infinidad de maneras distintas en la forma $$1 = \frac{1}{5} + \frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}$$ donde $ n $ y $a_1, a_2, \ldots , a_n$ son enteros positivos y $5 <a_1< a_2 <\ldots <a_n$

 

Problema

P5 OMM 1996. Recorre los cuadros y suma sus números

Enviado por jmd el 11 de Julio de 2010 - 10:36.

En una cuadrícula de $n \times n$ se escriben los números del 1 al $n^2$ en el orden habitual (de izquierda a derecha y de arriba a abajo). Como ejemplo se ilustra el caso $n = 3$: $$1 ~2 ~3$$ $$4 ~5 ~6$$ $$7 ~8 ~9$$

Llamemos camino en la cuadrícula a una sucesión de pasos de un cuadro a otro desde el cuadro 1 hasta el $n^2$, de tal manera que en cada paso el movimiento sea hacia la derecha o hacia abajo. Si $C$ es un camino, denotamos por $L(C)$ a la suma de los números por los que pasa el camino $C$.

Problema

P4 OMM 1995. Con 26 sí, con 27 no

Enviado por jmd el 10 de Julio de 2010 - 14:25.

a) Encuentra un subconjunto $B$ del conjunto $A = \{1, 2, 3, \ldots, 40\}$, de manera que $B$ tenga 26 elementos y que ningún producto de dos elementos de $B$ sea un cuadrado perfecto.
b) Demuestra que no se puede obtener un subconjunto de $A$ de 27 elementos con la característica mencionada en el inciso anterior.