P2. Sam vs Hugo, monedas en fila

Versión para impresión
Sin votos (todavía)

Sam y Hugo juegan con $n$ monedas, todas con $A$ en una cara y $S$ en la otra. Las monedas están puestas en fila sobre la mesa. Sam y Hugo se turnan. En su turno, Sam puede voltear una o más monedas, siempre que no voltee dos adyacentes; mientras Hugo elige exactamente dos monedas adyacentes y las voltea. Al comenzar el juego, todas las monedas muestran $A$. Sam juega primero y gana si todas las monedas muestran $S$ simultáneamente en cualquier momento. Halla todos los $n\geq 1$ con los que Hugo puede evitar que Sam gane.