Sea $ABC$ un triángulo y sea $I$ el excentro opuesto a $A$. La perpendicular a $AI$ por $I$ interseca a las rectas $AB$ y $AC$ en $E$ y $F$ respectivamente. La circunferencia $\omega_b$ es tangente a $EF$ y $AB$ en $B$ de modo que está en el exterior del triángulo $AEF$. Análogamente, la circunferencia $\omega_c$ es tangente a $EF$ y $AC$ en $C$ de modo que está en el exterior del triángulo $AEF$. La recta $IB$ corta de nuevo a $\omega_b$ en $X$ y la recta $IC$ corta de nuevo a $\omega_c$ en $Y$.
Sea $\omega_a$ el excírculo del triángulo $AEF$ opuesto a $A$. Pruebe que la reflexión de $\omega_a$ respecto a $EF$ es tangente a $XY$

1.-Demostrar que $XY$ es