XXXIX OMM 2025
P6. Un problema de excentros en la OMM
Sea $ABC$ un triángulo y sea $I$ el excentro opuesto a $A$. La perpendicular a $AI$ por $I$ interseca a las rectas $AB$ y $AC$ en $E$ y $F$ respectivamente. La circunferencia $\omega_b$ es tangente a $EF$ y $AB$ en $B$ de modo que está en el exterior del triángulo $AEF$. Análogamente, la circunferencia $\omega_c$ es tangente a $EF$ y $AC$ en $C$ de modo que está en el exterior del triángulo $AEF$. La recta $IB$ corta de nuevo a $\omega_b$ en $X$ y la recta $IC$ corta de nuevo a $\omega_c$ en $Y$.
Sea $\omega_a$ el excírculo del triángulo $AEF$ opuesto a $A$. Pruebe que la reflexión de $\omega_a$ respecto a $EF$ es tangente a $XY$
P5. Primos y potencias perfectas
Determina para cuales enteros positivos $n \geq 3$ existen $n$ números primos, no necesariamente distintos, $p_1, p_2, \dots , p_n$ tales que
$$p_1p_2+1, \ p_2p_3+1, \dots , p_{n-1}p_n+1, \ p_np_1+1$$
son todos potencias perfectas.
$Nota:$ una potencia perfecta es un número de la forma $a^k$ con $k \geq 2$ y $a, k$ enteros positivos.
P4. Las hormigas troll de Lalo
A Lalo le regalaron una red mágica, como la que se muestra en la figura. La red consta de 20 vértices unidos por algunas aristas. Lalo coloca, de una en una, hormigas en los vértices de la red. Las hormigas caminan sobre las aristas, y al hacerlo, la arista recorrida va desapareciendo. Lalo tiene $n$ hormigas y juega colocándolas de la siguiente manera:
P3. Los caminos ascendentes completos
Sea $n$ un entero positivo. Considera un tablero de $2 \times n$ dividido en cuadrados de $1 \times 1$. Cada cuadrado del tablero se etiqueta con un número distinto elegido de entre el $1$ al $2n$ elegido exactamente una vez.
Uno igual al del 2011 (P2)
P1. Colinealidad en un P1???
Sea $ABCD$ un paralelogramo. La circunferencia de diámetro $BD$ corta a las rectas $AD$ y $DC$ en los puntos $E$ y $F$ respectivamente distintos de $D$. La recta $EF$ interseca a $BA$ y $BC$ en los puntos $P$ y $Q$ respectivamente. Demuestra que el centro de la circunferencia que pasa por los puntos $B, \ P$ y $Q$ está en la recta $BD$.
