XII OMM 1998

Problema

P6 OMM 1998. Planos equidistantes a 5 puntos

Enviado por jmd el 11 de Julio de 2010 - 11:31.

Un plano en el espacio es equidistante a un conjunto de puntos si la distancia de cada punto al plano es la misma. ¿Cuál es el mayor número de planos equidistantes a 5 puntos de los cuales no hay 4 en un mismo plano?

Problema

P5 OMM 1998. Paralela si y sólo si... ¿Tales?

Enviado por jmd el 11 de Julio de 2010 - 11:28.

Sean $B$ y $C$ dos puntos de una circunferencia, y $AB$ y $AC$ las tangentes
desde un punto $A$. Sea $Q$ un punto del segmento $AC$ y $P$ la intersección de $BQ$ con la circunferencia. La paralela a $AB$ por $Q$ corta a $BC$ en $J$. Demuestre que $PJ$ es paralelo a $AC$ si y sólo si $BC^2 = AC \cdot QC$.

Problema

P4 OMM 1998. Sumas de dígitos inversos (\times un dígito)

Enviado por jmd el 11 de Julio de 2010 - 11:23.

Encuentre todos los enteros que se escriben como $$\frac{1}{a_1}+\frac{2}{a_2}+\ldots+\frac{9}{a_9}$$ donde $a_1, a_2, \ldots , a_9$ son dígitos distintos de cero que pueden repetir.

Problema

P3 OMM 1998. Octágono rojinegro

Enviado por jmd el 11 de Julio de 2010 - 11:20.

Cada uno de los lados y las diagonales de un octágono regular se pintan de rojo o de negro. Demuestre que hay al menos siete triángulos cuyos vértices son vértices del octágono y sus tres lados son del mismo color.

Problema

P2 OMM 1998. Rayos, ángulo, bisectriz, lugar geométrico...

Enviado por jmd el 11 de Julio de 2010 - 11:18.

Dos rayos $l,m$ parten de un mismo punto formando un ángulo $A$, y $P$ es un punto en $l$. Para cada circunferencia $C$, tangente a $l$ en $P$, que corte a $m$ en puntos $Q$ y $R$, $T$ es el punto donde la bisectriz del ángulo $QPR$ corta a $C$. Describe la figura geométrica que forman los puntos $T$. Justifica tu respuesta.

Problema

P1 OMM 1998. Números suertudos

Enviado por jmd el 11 de Julio de 2010 - 11:14.

Un número es suertudo si al sumar los cuadrados de sus cifras, y repetir esta operación suficientes veces, obtenemos el número 1. Por ejemplo, 1900 es suertudo, ya que $1900 \rightarrow 82 \rightarrow 68 \rightarrow 100 \rightarrow 1$. Encuentre una infinidad de parejas de enteros consecutivos, donde ambos números sean suertudos.

Distribuir contenido