XXII OMM 2008

Problemas de la 22va Olimpiada Mexicana de Matemáticas de 2008.
Problema

La arista es el MCD de sus vértices

Enviado por jmd el 31 de Julio de 2010 - 05:50.

En los vértices de un cubo están escritos 8 enteros positivos distintos, uno
en cada vértice. Y en cada una de las aristas está escrito el máximo común
divisor de los números que están en los 2 vértices que la forman. Sean $A$ la suma de los números escritos en las aristas y $V$ la suma de los números escritos en los vértices.

  • (a) Muestra que $\frac{2}{3}A\leq V$.
  • (b) ¿Es posible que $A = V$?
Problema

Juego de caballeros

Enviado por jmd el 31 de Julio de 2010 - 05:40.

Los caballeros $C_1,C_2,\ldots,C_n$, del Rey Arturo, se sientan en una mesa
redonda de la siguiente manera:



El rey decide realizar un juego para premiar a uno de sus caballeros. Iniciando con $C_1$, y avanzando en el sentido de las manecillas del reloj, los caballeros irán diciendo los números 1, 2, 3, luego 1, 2, 3, y así sucesivamente (cada caballero dice un número). Cada caballero que diga 2 ó 3 se levanta inmediatamente y el juego continúa hasta que queda un solo caballero: el ganador.

Problema

Caballos en el tablero

Enviado por jmd el 31 de Julio de 2010 - 05:25.

Considera un tablero de ajedrez. Los números del 1 al 64 se escriben en las casillas del tablero como en la figura:

  1       2       3        4       5        6       7       8
  9     10     11     12     13     14     15     16
17     18     19     20     21     22     23     24

Problema

Expresado como suma de potencias --de sus primeros dos divisores

Enviado por jmd el 31 de Julio de 2010 - 05:12.

Sean $1=d_1 < d_2 < d_3 \cdots < d_k = n$ los divisores del entero positivo $ n $. Encuentra todos los números $ n $ tales que $n = d_2 ^ 2 + d_3^3$.

Problema

OMM 2008, Problema 6

Enviado por jesus el 4 de Mayo de 2009 - 20:03.

Las bisectrices internas de los ángulos A, B y C de un triángulo ABC concurren en I y cortan
al circuncírculo de ABC en L, M y N, respectivamente. La circunferencia de diámetro IL,
corta al lado BC, en D y E; la circunferencia de diámetro IM corta al lado CA en F y G;
la circunferencia de diámetro IN corta al lado AB en H y J. Muestra que D, E, F, G, H,
J están sobre una misma circunferencia.

Problema

Problema 2 de la OMM 2008

Enviado por jesus el 17 de Noviembre de 2008 - 14:31.

Considera una circunferencia $\Gamma$, un punto A fuera de $ \Gamma $ y las tangentes AB, AC a $ \Gamma $ desde A, con B y C los puntos de tangencia. Sea P un punto sobre el segmento AB, distinto de A y de B. Considera el punto Q sobre el segmento AC tal que PQ es tangente a $ \Gamma$, y a los puntos R y S que están sobre las rectas AB y AC, respectivamente, de manera que RS es paralela a PQ y tangente a $\Gamma$. Muestra que el producto de las áreas de los triángulos APQ y ARS no depende de la elección del punto P.

Muestra que el producto de las áreas de los triángulos APQ y ARS no depende de la elección del punto P.

Distribuir contenido