IX OMM 1995
P6 OMM 1995. Tres operaciones sobre los símbolos de una cuadrícula
Sobre los cuadrados de una cuadrícula de $4x4$ se colocan símbolos 0 y1; estos símbolos se cambian uno por el otro de acuerdo a las siguientes tres operaciones:
La operación (a) cambia los símbolos de todos los elemntos de un renglón.
La operación (b) cambia de símbolos de todos los elementos de una columna.
La operación (c) cambia de símbolos de todos los elementos de una diagonal
(líneas punteadas en la figura).
P5 OMM 1995. Triángulos de igual área en pentágono
Sea $ABCDE$ un pentágono convexo de manera que los triángulos $ABC,BCD, CDE, DEA$ y $EAB$ son todos de igual área. Demuestra que
$$\frac{1}{4} (ABCDE)<(ABC)<\frac{1}{3} (ABCDE)$$.
(Donde el paréntesis denota el área del polígono dentro de él.)
P4 OMM 1995. Con 26 sí, con 27 no
a) Encuentra un subconjunto $B$ del conjunto $A = \{1, 2, 3, \ldots, 40\}$, de manera que $B$ tenga 26 elementos y que ningún producto de dos elementos de $B$ sea un cuadrado perfecto.
b) Demuestra que no se puede obtener un subconjunto de $A$ de 27 elementos con la característica mencionada en el inciso anterior.
P3 OMM 1995. Vértices consecutivos de heptágono regular
Sean $A,B,C,D$ vértices consecutivos de un heptágono regular, y $AL$ y $AM$ las tangentes desde $A$ a la circunferencia de centro $C$ y radio $CB$. Si $N$ es la intersección de $AC$ y $BD$, demuestra que los puntos $L, M$ y $N$ son colineales.
P2 OMM 1995. Seis puntos, 8 distancias 1 ¿equilátero?
Considera 6 puntos en el plano con la propiedad de que 8 de las distancias entre ellos son iguales a 1. Muestra que al menos tres de los puntos forman un triángulo equilátero de lado 1.
P1 OMM 1995. Déjame estrechar tu mano
En una Olimpiada de Matemáticas los concursantes están ocupando todos los asientos de un salón rectangular donde los asientos están alineados en filas y columnas de tal manera que hay más de dos filas y en cada fila hay más de dos asientos. Al inicio del examen un profesor les sugiere que se deseen suerte dándose la mano; cada uno de los concursantes estrecha la mano de los concursantes que están junto a él (adelante, atrás, a los lados y en diagonal) y sólo a éstos. Alguien observa que se dieron 1020 apretones de manos ¿Cuántos concursantes hay?