IX OMM 1995

Problema

Tres operaciones sobre los símbolos de una cuadrícula

Enviado por jmd el 10 de Julio de 2010 - 14:36.

Sobre los cuadrados de una cuadrícula de $4x4$ se colocan símbolos 0 y1; estos símbolos se cambian uno por el otro de acuerdo a las siguientes tres operaciones:
La operación (a) cambia los símbolos de todos los elemntos de un renglón.
La operación (b) cambia de símbolos de todos los elementos de una columna.
La operación (c) cambia de símbolos de todos los elementos de una diagonal
(líneas punteadas en la figura).

Problema

Triángulos de igual área en pentágono

Enviado por jmd el 10 de Julio de 2010 - 14:28.

Sea $ABCDE$ un pentágono convexo de manera que los triángulos $ABC,BCD, CDE, DEA$ y $EAB$ son todos de igual área. Demuestra que

$$\frac{1}{4} (ABCDE)<(ABC)<\frac{1}{3} (ABCDE)$$.

(Donde el paréntesis denota el área del polígono dentro de él.)

Problema

Con 26 sí, con 27 no

Enviado por jmd el 10 de Julio de 2010 - 14:25.

a) Encuentra un subconjunto $B$ del conjunto $A = \{1, 2, 3, \ldots, 40\}$, de manera que $B$ tenga 26 elementos y que ningún producto de dos elementos de $B$ sea un cuadrado perfecto.
b) Demuestra que no se puede obtener un subconjunto de $A$ de 27 elementos con la característica mencionada en el inciso anterior.

Problema

Vértices consecutivos de heptágono regular

Enviado por jmd el 10 de Julio de 2010 - 14:23.

Sean $A,B,C,D$ vértices consecutivos de un heptágono regular, y $AL$ y $AM$ las tangentes desde $A$ a la circunferencia de centro $C$ y radio $CB$. Si $N$ es la intersección de $AC$ y $BD$, demuestra que los puntos $L, M$ y $N$ son colineales.

Problema

Seis puntos, 8 distancias 1 ¿equilátero?

Enviado por jmd el 10 de Julio de 2010 - 14:22.

Considera 6 puntos en el plano con la propiedad de que 8 de las distancias entre ellos son iguales a 1. Muestra que al menos tres de los puntos forman un triángulo equilátero de lado 1.
 

Problema

Déjame estrechar tu mano

Enviado por jmd el 10 de Julio de 2010 - 14:20.

En una Olimpiada de Matemáticas los concursantes están ocupando todos los asientos de un salón rectangular donde los asientos están alineados en filas y columnas de tal manera que hay más de dos filas y en cada fila hay más de dos asientos. Al inicio del examen un profesor les sugiere que se deseen suerte dándose la mano; cada uno de los concursantes estrecha la mano de los concursantes que están junto a él (adelante, atrás, a los lados y en diagonal) y sólo a éstos. Alguien observa que se dieron 1020 apretones de manos ¿Cuántos concursantes hay?

Distribuir contenido