Paralelas si y sólo si paralelas (P6)

Versión para impresión
Sin votos (todavía)

Sean $C_1$ y $C_2$ dos circunferencias de radios diferentes que se cortan en los puntos $A$ y $B$. Consideremos un punto $C$ sobre la recta $AB$ de modo que $B$ queda entre $A$ y $C$.

Sean $P$ y $Q$ puntos sobre $C_1$ y $C_2$, respectivamente, tales que $CP$ es tangente a $C_1$, $CQ$ es tangente a $C_2$, $P$ no está dentro de $C_2$ y $Q$ no está dentro de $C_1$.

La recta $PQ$ corta de nuevo a $C_1$ en $R$ y a $C_2$ en $S$, ambos puntos distintos de $B$.

Supongamos que $CR$ corta de nuevo a $C_1$ en $X$ y $CS$ corta de nuevo a $C_2$ en $Y$. Sea $Z$ un punto sobre la recta $XY$.

Muestra que $SZ$ es paralela a $QX$ si y sólo si $PZ$ es paralela a $RX$.