Problemas - Geometría

Problema

Longitud Mínima

Enviado por jesus el 29 de Enero de 2008 - 14:23.

Sea ABC un triángulo y P un punto que se mueve sobre la recta que contiene al lado BC. Consideremos M y N los pies de las perpendiculares trazadas desde P sobre los lado AB y AC respectivamente. Encuentra el punto P para el cual MN tiene longitud mínima.

Problema

Longitud mínima - caso particular

Enviado por jmd el 7 de Enero de 2008 - 00:00.

Sean $ABC$ un triángulo rectángulo en $ A $, y $ P $ un punto móvil en la hipotenusa $ BC $.

Problema

El Tesoro Pirata

Enviado por jmd el 1 de Enero de 2008 - 00:00.

En el mapa está un roble, un pino y un mezquite. Las instrucciones son: camina desde el mezquite hacia el pino, gira a la izquierda en ángulo recto, camina la misma distancia que hay del mezquite al pino, y clava ahí una estaca X; después regresa al mezquite, camina hacia el roble, gira a la derecha en ángulo recto, camina la misma distancia que hay entre el roble y el mezquite, y clava ahí una estaca Y. El tesoro está enterrado en el punto medio del segmento XY. ¿Qué hacer si el mezquite ha desaparecido?

 

Problema

Triángulo rectángulo -enunciado

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Considere un triángulo rectángulo con longitudes a, b y c, la hipotenusa es de longitud c, sea r la longitud del radio de la circunferencia inscrita en el triángulo. Demuestre que r es igual a la mitad de a+b-c.

Problema

El problema 6 de la OMM 2005

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Como se sabe, uno de los 6 problemas del concurso nacional de la Olimpiada Mexicana de Matemáticas es muy difícil –incluso para aquellos concursantes que han tenido un buen entrenamiento. He aquí el enunciado del problema 6 del concurso nacional de 2005.

Problema

Teorema de Pitágoras

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Un triángulo de lados $a, b, c$, con $c > a, b$ es triángulo rectángulo sí y sólo si $c^2 = a^2 + b^2$.

Problema

Tesoro Pirata Disfrazado

Enviado por jmd el 1 de Enero de 2008 - 00:00.

El problema del tesoro pirata puede ser planteado de la siguiente manera. Sean dados los triángulos MPX y MRY, ambos isósceles y rectángulos en P y R respectivamente. Demostrar que la mediatriz del segmento PR pasa por el punto medio de XY.

Problema

Problema 1, OMM 2005

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Sea $O$ el centro de la circunferencia circunscrita al triángulo $ABC$, y $P$ un punto cualquiera del segmento $BC$ ($P$ no es ni $B$ ni $C$). La circunferencia circunscrita al triángulo $BPO$ corta en $R$ al segmento $AB$ ($R$ no es $A$ ni es $B$), y la circunferencia circunscrita al triángulo $COP$ corta en $Q$ al segmento $CA$ ($Q$ no es $C$ ni es $A$).

i)Demostrar que el triángulo $PQR$ es semejante al $ABC$ y que $O$ es ortocentro de $PQR$.

ii)Demuestrar que las circunferencias circunscritas a los triángulos $BPO$, $COP$ y $PQR$ son todas del mismo tamaño.

Problema

QUINTO EXAMEN SELECTIVO

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Problema 1 Dado un triángulo acutángulo ABC se trazan las circunferencias c1 de diámetro AB y c2 de diámetro BC y se ubican las intersecciones M y N y P y Q de las alturas CC’ y BB’ (vistas como rectas) con c1 y c2, respectivamente. Demostrar que los puntos M, N, P y Q pertenecen a una misma circunferencia.

Problema

Triángulo Rectángulo 2

Enviado por jmd el 3 de Agosto de 2007 - 08:47.

Sea ABC un triángulo rectángulo con ángulo recto en C, denotemos con R al punto donde la circunferencia inscrita es tangente al lado BC. Pruebese que $ AR \cdot RB $ es igual al área de ABC.