Avanzado

Problemas de nivel nacional.
Problema

IMO 2008, Problema 1

Enviado por Luis Brandon el 4 de Mayo de 2009 - 16:51.

Un triangulo $ ABC $  tiene ortocentro $ H $. La circunferencia con centro en el punto medio de $ BC $, que pasa por $ H $, corta a la recta $ BC $ en $A_1$y$A_2$, de manera similar se definen los puntos $B_1,B_2$ en la recta $CA$ y $C_1,C_2$ en la recta $AB$. Demuestra que los puntos $A_1, A_2, B_1, B_2, C_1, C_2$ estan en una misma circunferencia.

Problema

Problema 8 Geometrense

Enviado por Luis Brandon el 28 de Abril de 2009 - 10:33.

Sean ABC un triángulo y AP, AQ las tangentes desde A a la circunferencia de diámetro BC (P y Q los puntos de tangencia). Muestra que el ortocentro H de ABC está sobre PQ.

Problema

Perpendicular si y sólo si el triángulo es isósceles

Enviado por Luis Brandon el 27 de Abril de 2009 - 21:28.

Sea ABC un triángulo de circuncentro O, sea M el punto medio de AB y E el gravicentro del triángulo AMC. Demostrar que OE y CM son perpendiculares si y sólo si AB=AC

Problema

Perpendiculares

Enviado por Luis Brandon el 12 de Abril de 2009 - 12:14.

Para un triángulo $ ABC $, toma los puntos $ M $ y $ N $ en las extensiones de AB y CB, respectivamente de tal manera que $ M $ y $ N $ estén más cerca de $ B $ que de $ A $ y $ C $, y que $ AM=CN=s $ donde $ s $ denota el semiperímetro. Sea $ K$ el punto diametralmente opuesto a $ B $ e $ I $ el incentro del triángulo $ ABC $.

Problema

Ladrones de la tercera edad

Enviado por jmd el 27 de Febrero de 2009 - 08:23.

"El Carrizos" y "el Mayel", dos ladrones de la tercera edad, han robado un collar circular con $2m$ cuentas de oro y $2n$ cuentas de plata, dispuestas en un orden desconocido.

Problema

Problema 5 OMM 2003

Enviado por jose el 30 de Enero de 2009 - 23:11.

Problema 5. Se escriben en tarjetas todas las parejas de enteros $(a,b)$ con $1\leq a\leq b \leq 2003$. Dos personas juegan con las tarjetas como sigue: cada jugador en su turno elige $(a,b)$ (que se retira del juego) y escribe el producto ab en el pizarrón (ambos jugadores usan el mismo pizarrón). Pierde el jugador que ocasione que el máximo común divisor de los números escritos hasta ese momento sea $1$. ¿Quién tiene la estrategia ganadora? (Es decir, ¿cuál de los dos jugadores puede inventar un método que asegure su tirunfo?)

Problema

Problema 1 OMM 2003

Enviado por jose el 29 de Enero de 2009 - 22:00.

Problema 1. Dado un número $k$ de dos o más cifras, se forma otro
entero $m$ insertando un cero entre las cifras de las unidades y
de las decenas de $k$. Encuentra todos los números $k$ para los
cuales $m$ resulta ser un múltiplo de $k$.

Problema

Cuadrados en cada lado y concurrencia.

Enviado por jesus el 29 de Enero de 2009 - 18:01.

Sobre los lados del triángulo ABC se han dibujado los cuadrados $ \mathcal{C}_A $, $ \mathcal{C}_B $ y $ \mathcal{C}_C $, de tal manera que un lado del cuadrado es un lado del triángulo y el cuadrado no traslapa al triángulo. El cuadrado $ \mathcal{C}_A $ se encuentra sobre BC; $ \mathcal{C}_B $ sobre AC; y $ \mathcal{C}_C $ sobre AB.

Problema

Problema de cíclicos

Enviado por Luis Brandon el 27 de Enero de 2009 - 20:52.

En un triángulo acutángulo, el círculo de diámetro AB intersecta la altura CE y su extensión en M y N, y el círculo de diámetro AC intersecta la altura BD y su extensión en P y Q. Probar que los puntos M, N, P, Q están sobre una misma circunferencia.

(Nota:Este problema es una extensión del problema dos segmentos iguales.)

Problema

Cuerda del incírculo, una mediana y una perpendicular

Enviado por jesus el 22 de Enero de 2009 - 19:04.

Sean P, Q y R los puntos donde la circunferencia inscrita del triángulo ABC toca a los lados BC, CA y AB respectivamente. Llamemos M al punto medio de BC.

Distribuir contenido