Avanzado
IMO 2009 Problema 2
Sean ABC un triángulo de circuncentro O, P y Q puntos sobre AB y AC, respectivamente, y K, L, M los puntos medios de BQ, CP y PQ, respectivamente. Si el circuncírculo del triangulo KLM es tangente a PQ, demostrar que OP=OQ.

IMO 2009 Problema 4
En un triángulo $ ABC $, donde $AB=AC$, los bisectrices internas de $\angle{A}$ y $\angle{B}$ cortan a los lados $ BC $ y $AC$ en $D$ y $E$, respectivamente. Sea $I$ el incentro del triángulo $ADC$. Supongamos que $\angle{IEB}=45$. Encontrar todos los valores posibles de $\angle{A}$.

El lugar geométrico de la reflexión de un punto
Sean $ P$ un punto en el interior de una circunferencia $\mathcal{C}$ y $ M$ un punto sobre $\mathcal{C}$. Definamos $ N$ el punto sobre $\mathcal{C}$ tal que el ángulo $\measuredangle MPN = 90^{\circ}$ (en sentido contrario de las manecillas del reloj). Llamemos $P'$ el punto que resulta de reflejar $ P$ con respecto a $MN$.
Problema 5 IMO 2005
Sea $ ABCD$ un cuadrilatero convexo con $ BC=DA $ y además las rectas $ BC,DA $ no son paralelas. Consideremos dos puntos variables $ E,F $ sobre $ BC, DA $ respectivamente, que satisfacen $ BE=DF$ . Sea $P$ la interseccion de $ AC, BD.$ Las rectas $BD$ y $EF$ se intersectan en $Q$ y las rectas $AC$ y $EF$ se intersectan en $R$.
Probar simediana
Considera un triangulo $ ABC $ Con $ BD $ su bisectriz interna ( $D$ sobre $AC$) Sea $E$ el punto donde se intersectan $BD$ y el circuncirculo del triangulo $ ABC $. El circulo de diametro $DE$ corta al circuncirculo del triangulo $ ABC $ en los puntos $D,F$ demuestra que $BF$ es la simediana del triangulo $ ABC $

Problema 2 BMO 2009
Sea $MN$ una línea paralela al lado $ BC $ del triángulo $ ABC $, con $ M $ sobre el lado $AB$ y $ N $ sobre el lado $AC$. Las íineas $BN$ y $CM$ se intersectan en un punto $P$. Los circuncírculos de los triángulos $BPM$ y $CPN$ se intersectan en $P$ y $Q$. Demostrar que $\angle{BAQ}=\angle{CAP}$

Problema 5 TZALOA
Sean H,O el ortocentro y circuncentro del triangulo ABC con AB distinto de AC. Sea T la circunferencia circunscrita al triangulo ABC. La prolongacion de la mediana AM del triangulo ABC, corta a T en el punto N y la circunferencia de diametro AM corta a T en los puntos A y P. Demuestra que las rectas AP, BC y OH son concurrentes si y solo si AH=NH
Problema de Cíclicos (mi primera invención)
Sea $ ABC $ un triángulo con incentro $I$ y $AB$ menor que $AC$. Sean $D,E,F$ los puntos de tangencia del incírculo con los lados $BC,CA, AB$, respectivamente. Sean $ H $ la intersección de $BI$ con $EF$, y $G$ la intersección de $CI$ con $EF.$
a) Demostrar que $I$ es el incentro del triángulo $DGH.$
b) Demostrar que las rectas $BG$ y $CH$ concurren sobre la perpendicular a $ BC $ que pasa por $D.$
Problema 1, geometrense 2008
En un circunferencia hay $3n$ puntos que la dividen en $3n$ arcos. De estos arcos $ n$ miden 1, $n $ miden 2 y el resto mide 3. Demuestra que existen dos de estos puntos diametralmente opuestos.
Problema 6, XII Olimpiada Iberoamericana
Sea $P=\{P_1, P_2, \dots, P_{1997}\}$ un conjunto de 1997 puntos en el interior de un círculo de radio 1, siendo $P_1$ el centro del círculo. Para cada $k=1, \dots, 1997$ sea $x_k$ la distancia de $P_k$ al punto de $ P$ más próximo a $P_k$ y distinto de $P_k$. Demostrar que:
$$x_1^2 + x_2^2 + \cdots +x_{1997}^2 \leq 9$$
