Experto

Nivel para la gente que ha tenido preparación para los internacionales de Matemáticas o que simplemente es muy hábil para resolver problemas.
Problema

Producto de diagonales en un polígono regular

Enviado por jesus el 7 de Mayo de 2009 - 11:36.

Sea $A_1, A_2, \dots, A_n$ los $ n $ vértices de un polígono regular con circunferencia circuncrita de radio $R$, Demuestra que:

Problema

Isósceles semejantes sobre un triángulo

Enviado por jesus el 4 de Mayo de 2009 - 21:00.

Consideremos $A'$, $B'$ y $C'$ tres puntos en el exterior del triángulo $ ABC $, de tal manera que los triángulos $ A'BC $, $ AB'C $ y $ ABC' $ son todos isósceles semejantes y de bases BC, CA y AB respectivamente, Demuestra que $AA'$, $BB'$ y $CC'$ concurren.

Problema

Problema de Excalibur Probleam Corner 309

Enviado por Luis Brandon el 23 de Enero de 2009 - 14:31.

En un triángulo acutángulo ABC donde AB < AC. Sea H el pie de la perpendicular de A sobre BC y M el punto medio de AH. Sea D el punto de tangencia del incirculo del triangulo ABC en BC. La linea DM intersecta por segunda vez al incirculo en N. Probar que los angulos BND y CND son iguales.

Problema

El problema 6 de la OMM 2005

Enviado por jmd el 1 de Enero de 2008 - 00:00.

Como se sabe, uno de los 6 problemas del concurso nacional de la Olimpiada Mexicana de Matemáticas es muy difícil –incluso para aquellos concursantes que han tenido un buen entrenamiento. He aquí el enunciado del problema 6 del concurso nacional de 2005.

Sea $ABC$ un triángulo y $AD$ la bisectriz del ángulo $BAC$, con $D$ sobre $BC$. Sea $E$ un punto sobre el segmento $BC$ tal que $BD = EC$. Por $E$ traza $l$ la recta paralela a $AD$ y considera un punto $P$ sobre $l$ y dentro del triángulo. Sea $G$ el punto donde la recta $BP$ corta al lado $AC$ y sea $F$ el punto donde la recta $CP$ corta al lado $AB$. Muestra que $BF = CG$.

Problema

IMO 2004, problema 2

Enviado por jesus el 1 de Enero de 2008 - 00:00.

Encuentre todos los polinomios $P(x)$ tales que

$$P(a-b)+P(b-c)+P(c-a)=2P(a+b+c)$$

para todo $a, b, c$ reales que satisfacen que $ab+bc+ca=0$.

Distribuir contenido