Experto
Problema 5 - IMO 2016 - Quita términos lineales de ambos lados
En la pizarra está escrita la ecuación $$(x - 1)(x - 2)\cdots (x - 2016) = (x -1)(x- 2)\cdots (x-2016)$$ que tiene 2016 factores lineales en cada lado. Determinar el menor valor posible de $k$ para el cual pueden borrarse exactamente $k$ de estos 4032 factores lineal, de modo que al menos quede un factor en cada lado y la ecuación que resulte no tenga soluciones reales.
Problema 4 - IMO 2016 - Conjunto de enteros fragantes
Un conjunto de números enteros positivos se llama fragante si tiene al menos dos elementos, y cada uno de sus elementos tiene algún factor primo en común con al menos uno de elementos restantes. Sea $P(n) = n^2 + n + 1$. Determinar el menor número entero positivo $b$ para el cual existe algún número entero no negativo $a$ tal que el conjunto $$\{P(a+1), P(a+2), \dots, P(a + b)\}$$ es fragante.
Problema 3 - IMO 2016 - Área de un polígono cíclico de coordenadas enteras.
Sea $P=A_1A_2 \dots A_k$ un polígono convexo en el plano. Los vértices $A_1, A_2, \dots, A_k $ tienen coordenadas enteras y están sobre un círculo. Sea $\mathcal{S}$ el área de $P$. Los cuadrados de las los lados de $P$ son todos divisibles por un entero dado $n$. Demuestra que $2\mathcal{S}$ es divisible por $n$,
Traducido del inglés.
Problema 2 - IMO 2016 - Las letras de IMO en un tablero
Hallar todos los enteros positivos $n$ para los que en cada casilla de un tablero de $n \times n$ puede escribir una de las letras $I$, $M$ y $O$ de manera que:
Problema 1 - IMO 2016 - Concurrencia de rectas
El triángulo $BCF$ tiene ángulo recto en $B$. Sea $A$ el punto en la línea $CF$ tal que $FA = FB$ y $F$ se encuentra entre $A$ y $C$. El punto $D$ está elegido de tal manera que $DA= DC$ y $AC$ es la bisectríz de $\angle DAB$. El punto $E$ es tal que $EA=ED$ y $AD$ es la bisectríz de $\angle EAC$. Sea $M$ el punto medio de $CF$. Sea $X$ el punto tal que $AMXE$ es un paralelogramo (donde $AM \parallel EX$ y $AE \parallel MX$). Demuestra que las líneas $BD$, $FX$ y $ME$ son concurrentes.
Traducido del inglés.
P5. IMO 2014 - Monedas fraccionarias
Para cada entero positivo $n$, el Banco de Ciudad del Cabo produce monedas de valor $\frac{1}{n}$. Dada una colección finita de tales monedas (no necesariamente de distintos valores) cuyo valor total no supera $99 + \frac{1}{2}$, demostrar que es posible separar esta colección en 100 o menos montones, de modo que el valor total de cada montón sea como máximo 1.
P3. IMO 2014 - Demuestra que es tangente
En el cuadrilátero convexo $ABCD$, se tiene $\angle ABC = \angle CDA = 90^{\circ}$. La perpendicular a $BD$ desde $A$ corta a $BD$ en el punto $H$. Los puntos $S$ y $T$ están en los lados $AB$ y $AD$, respectivamente, y son tales que $H$ está dentro del triángulo $SCT$ y
$$\angle CHS - \angle CSB = 90^{\circ},\quad \angle THC - \angle DTC = 90^{\circ}$$.
Demostrar que la recta $BD$ es tangente a la circunferencia circunscrita del triángulo $TSH$.
P2. IMO 2014 - Configuraciones pacíficas en un tablero
Sea $n \geq 2$ un entero. Consideremos un tablero de tamaño $n \times n$ formado por $n^2$ cuadrados unitarios. Una configuración de $n$ fichas en este tablero se dice que es pacífica si en cada fila y en cada columna hay exactamente una ficha. Halle el mayor entero positivo $k$ tal que, para cada configuración pacífica de $n$ fichas, existe un cuadrado de tamaño $k \times k$ sin fichas en sus $k^2$ cuadrados unitarios.
Te explico lo de convexidad... el resto no creo que le entiendas
Sea $A_1A_2\ldots A_8$ un octágono convexo, es decir, un octágono donde todos sus ángulos internos son menores de $180^{\circ}$. Además los lados del octágono tienen la misma longitud y cada par de lados opuestos son paralelos. Para cada $i=1,\ldots,8$, definamos el punto $B_i$ como la intersección del segmento $A_iA_{i+4}$ con el segmento $A_{i-1}A_{i+1}$, donde $A_{j+8}=A_j$ y $B_{j+8}=B_j$ para todo número entero $j$. Muestra que para algún número $i$, de entre los números $1,2,3,4$ se cumple
$$\frac{|A_iA_{i+4}|}{|B_iB_{i+4}|}\leq\frac{3}{2}$$
EGMO Problema 4 - Conjunto de enteros llenos por sumas y libres de sumar cero
Un conjunto $A$ de enteros es llamado lleno por sumas si $A \subseteq A + A$, es decir, que cada elemento $a \in A$ es la suma de algún par (no necesarimante distintos) de elementos $b,c \in A$.
Un conjunto $A$ de enteros es llamado libre de sumar cero si 0 es el único entero que no puede ser expreado como la suma de los elementos de un subconjunto finito y no vacio de $A$.
¿Existirá un conjunto de enteros lleno por sumas y libre de sumar cero?
