Trigonometría

Problema

Te explico lo de convexidad... el resto no creo que le entiendas

Enviado por jmd el 29 de Noviembre de 2013 - 20:12.

Sea $A_1A_2\ldots A_8$ un octágono convexo, es decir, un octágono donde todos sus ángulos internos son menores de $180^{\circ}$. Además los lados del octágono tienen la misma longitud y cada par de lados opuestos son paralelos. Para cada $i=1,\ldots,8$, definamos el punto $B_i$ como la intersección del segmento $A_iA_{i+4}$ con el segmento $A_{i-1}A_{i+1}$, donde  $A_{j+8}=A_j$ y $B_{j+8}=B_j$ para todo número entero $j$. Muestra que para algún número $i$, de entre los números $1,2,3,4$ se cumple

$$\frac{|A_iA_{i+4}|}{|B_iB_{i+4}|}\leq\frac{3}{2}$$

Problema

Ejercicio trigonométrico

Enviado por jmd el 10 de Diciembre de 2011 - 09:40.

Sea $ABC$ un triángulo equilátero y $\Gamma$ su círculo inscrito. Si $D$ y $E$ son puntos de los lados $AB$ y $AC$, respectivamente, tales que $DE$ es tangente a $\Gamma$, demuestre que $$\frac{AD}{DB}+\frac{AE}{EC}=1$$

Problema

Desigualdad trigonométrica

Enviado por jmd el 9 de Diciembre de 2011 - 10:50.

Sean $x, y, z$ tres números reales tales que $0 < x < y < z < \pi/2$. Demostrar la desigualdad:
$$\pi/2 + 2\sin x\cos y + 2\sin y \cos z\gt \sin 2x + \sin 2y + \sin 2z$$

 

Problema

¿Cómo se calcula la longitud de una ceviana?

Enviado por jmd el 8 de Diciembre de 2011 - 20:54.

Sea $ABC$ un triángulo cuyos lados son $a, b, c$. Se divide cada lado del triángulo en "n" segmentos iguales. Sea $S$ la suma de los cuadrados de las distancias de cada vértice a cada uno de los puntos de división del lado opuesto distintos de los vértices. Demuestre que $$\frac{S}{a^2+b^2+c^2}$$ es un número racional.

 

Problema

Punto en el interior de un equilátero

Enviado por jmd el 7 de Diciembre de 2011 - 10:53.

 Sea $P$ un punto interior al triángulo equilátero $ABC$ tal que:
$$PA = 5, PB = 7, PC = 8$$
Encontrar la longitud del lado del triángulo ABC.

Distribuir contenido