Experto

Nivel para la gente que ha tenido preparación para los internacionales de Matemáticas o que simplemente es muy hábil para resolver problemas.
Problema

Problema 3 (IMO 2011)

Enviado por jmd el 19 de Julio de 2011 - 10:25.

Sea $f$ una función del conjunto de los números reales en sí mismo que satisface $$f(x + y)\leq yf(x) + f(f(x))$$ para todo par de números reales $x, y$. Demostrar que $f(x) = 0$ para todo $x\leq0$.

Problema

Problema 6 (IMO 2011)

Enviado por jmd el 19 de Julio de 2011 - 09:21.

Sea $ABC$ un triángulo acutángulo con circuncírculo $\Gamma$. Sea $l$ una tangente a $\Gamma$, y sean $l_a,l_b,l_c$ las rectas obtenidas de $l$ mediante reflexión en $BC,CA,AB$, respectivamente. Demostrar que el circuncírculo del triángulo determinado por las rectas $l_a,l_b,l_c$ es tangente al círculo $\Gamma$.

Problema

Coloraciones de puntos en una cuadrícula (Problema 3, OIM)

Enviado por jesus el 7 de Abril de 2011 - 09:37.

Sean $n \geq 2$ un número entero y $D_n$ el conjunto de puntos $(x,y)$ del plano cuyas coordenadas son números enteros con $-n \leq x  \leq n $ y $-n \leq y \leq n$

Problema

Problema 6, IMO 2010

Enviado por jesus el 21 de Julio de 2010 - 09:28.

Sea $a_1, a_2, a_3, \ldots$ una sucesión de números reales positivos. Se tiene que para algún entero positivo $s$,
$$a_n = \textrm{max}\{a_k + a_{n-k} \textrm{ tal que } 1 \leq k \leq n - 1\}$$
para todo $n > s$. Demuestre que existen enteros positivos $\ell$ y $N$, con $\ell \leq s$, tales que $a_n = a_\ell + a_{n-\ell}$ para todo $n \geq N$.

Problema

Problema 3, IMO 2010

Enviado por jesus el 19 de Julio de 2010 - 19:44.

Sea $\mathbb{N}$ el conjunto de los enteros positivos. Determine todas las funciones $g : \mathbb{N} \to \mathbb{N}$ tales que $$\left( g(m) + n\right) \left(m + g(n) \right) $$
es un cuadrado perfecto para todo $m, n \in \mathbb{N}$.

Problema

Problema 5, IMO 2010

Enviado por jesus el 18 de Julio de 2010 - 20:58.

En cada una de las seis cajas $B_1,B_2,B_3,B_4,B_5,B_6$ hay inicialmente sólo una moneda. Se permiten dos tipos de operaciones:

  • Tipo 1: Elegir una caja no vacía $B_j$ , con $1 \leq j \leq 5$. Retirar una moneda de $B_j$ y añadir dos monedas a $B_{j+1}$.
  • Tipo 2: Elegir una caja no vacía $B_k$, con $1 \leq k \leq 4$. Retirar una moneda de $B_k$ e intercambiar los contenidos de las cajas (posiblemente vacías) $B_{k+1}$ y $B_{k+2}$.

Determine si existe una sucesión finita de estas operaciones que deja a las cajas $B_1,B_2,B_3,B_4,B_5$ vacías y a la caja $B_6$ con exactamente $2010^{2010^{2010}}$ monedas. (Observe que $a^{b^c} = a^{(b^c)}$.)

Problema

Problema 2, IMO 2010

Enviado por jesus el 18 de Julio de 2010 - 17:59.

Sea $ABC$ un triángulo, $I$ su incentro y $\Gamma$ su circunferencia circunscrita. La recta $AI$ corta de nuevo a $\Gamma$ en $D$. Sean $E$ un punto en el arco $\widehat{BDC}$ y $F$ un punto en el lado $BC$ tales que
$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$
Sea $G$ el punto medio del segmento $IF$. Demuestre que las rectas $DG$ y $EI$ se cortan sobre $\Gamma$.

Problema

IMO 2009, Problema 5

Enviado por jesus el 1 de Agosto de 2009 - 22:58.

Determinar todas las funciones f del conjunto de los enteros positivos en el conjunto de los enteros positivos tales que, para todos los enteros positivos a y b, existe un triángulo no degenerado cuyos lados miden

$$a, f(b)  \textrm{ y } f(b + f(a) - 1)$$

(Un triángulo es no degenerado si sus vértices no están alineados).

Problema

IMO 2009, Problema 3

Enviado por jesus el 24 de Julio de 2009 - 13:51.

Sea $s_1, s_2, s_3, \ldots $ una sucesión estrictamente creciente de enteros positivos tal que las
subsucesiones
$$s_{s_1} , s_{s_2} , s_{s_3} ,\ldots \textrm{ y } s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, \ldots $$
son ambas progresiones aritméticas. Demostrar que la sucesión $s_1, s_2, s_3, . . .$ es también una progresión

Problema

Problema 8(G)

Enviado por jmd el 28 de Junio de 2009 - 15:07.

En un triángulo $ ABC $, el ángulo $ A $  mide el doble que el $ C $. Se traza la mediana $BD$ al lado $CA$ ($D$ es punto medio de $ CA $). Si el ángulo $ DBC $ es igual al ángulo en $ A $, calcular las medidas de los ángulos del triángulo $ ABC $.

Distribuir contenido