Avanzado

Problemas de nivel nacional.
Problema

Paseos de una ficha en un tablero

Enviado por jmd el 9 de Enero de 2012 - 23:04.

Los números $1,2,3,\ldots,n^2$ se colocan en las casillas de una cuadrícula de $n\times n$, en algún orden, un número por casilla. Una ficha se encuentra inicialmente en la casilla con el número $n^2$. En cada paso, la ficha puede avanzar a cualquiera de las casillas que comparten un lado con la casilla donde se encuentra. Primero, la ficha viaja a la casilla con el número 1, y para ello toma uno de los caminos más cortos (con menos pasos) entre la casilla con el número $n^2$ y la casilla con el número 1.

Problema

Suma de diferencias

Enviado por jmd el 9 de Enero de 2012 - 23:01.

Se consideran $n$ números reales $a_1,a_2,\ldots,a_n$ no necesariamente distintos. Sea $d$ la diferencia entre el mayor y el menor de ellos y sea $$s= \sum_{i\lt j}|a_i-a_j|$$ Demuestre que $(n-1)d\leq s\leq n^2d/4$ y determine las condiciones que deben cumplir estos $n$ números para que se verifique cada una de las igualdades.

Problema

Incírculo y circuncírculo de un escaleno rectángulo

Enviado por jmd el 9 de Enero de 2012 - 22:59.

En el triángulo escaleno $ABC$, con $\angle{BAC}=90$, se consideran las circunferencias inscrita y circunscrita. La recta tangente en $A$ a la circunferencia circunscrita corta a la recta $BC$ en $M$. Sean $S$ y $R$ los puntos de tangencia de la circunferencia inscrita con los catetos $AC$ y $AB$, respectivamente. La recta $RS$ corta a la recta $BC$ en $N$. Las rectas $AM$ y $SR$ se cortan en $U$. Demuestre que el triángulo $UMN$ es isósceles.

Problema

La recta pasa por el ortocentro

Enviado por jmd el 9 de Enero de 2012 - 22:43.

Sea $O$ el circuncentro de un triángulo acutángulo $ABC$ y $A_1$ un punto en el
arco menor $BC$ de la circunferencia circunscrita al triángulo $ABC$. Sean $A_2$ y
$A_3$ puntos en los lados $AB$ y $AC$ respectivamente, tales que $\angle{BA_1A_2} = \angle{OAC}$ y $\angle{CA_1A_3} = \angle{OAB}$. Demuestre que la recta $A_2A_3$ pasa por el ortocentro del triángulo $ABC$.

Problema

Coloreo roji-azul de 2n puntos alineados

Enviado por jmd el 9 de Enero de 2012 - 22:41.

Dado un entero positivo $n$, en un plano se consideran $2n$ puntos alineados $A_1, A_2,\ldots, A_{2n}$. Cada punto se colorea de azul o rojo mediante el siguiente procedimiento:

  • En el plano dado se trazan $n$ circunferencias con diámetros de extremos $A_i$ y $A_j$ , disyuntas dos a dos.
  • Cada $A_k, 1\leq k\leq 2n$, pertenece exactamente a una circunferencia.
  • Se colorean los puntos de modo que los dos puntos de una misma
    circunferencia lleven el mismo color.

Determine cuántas coloraciones distintas de los $2n$ puntos se pueden obtener al variar las $n$ circunferencias y la distribución de los dos colores.

Problema

Operación residual sobre dos enteros positivos

Enviado por jmd el 9 de Enero de 2012 - 22:36.

Dados dos enteros positivos $a$ y $b$, se denota por $(a\nabla b)$ al residuo que se obtiene al dividir $a$ entre $b$. Este residuo es uno de los números $0, 1,\ldots, b - 1$. Encuentre todas las parejas de números $(a, p)$ tales que $p$ es primo y se cumple que $$(a\nabla p) + (a\nabla 2p) + (a\nabla 3p) + (a\nabla 4p) = a + p.$$

Problema

Ecuación de inversos

Enviado por jmd el 9 de Enero de 2012 - 22:35.

Sea $p > 3$ un número primo. Si $$\frac{1}{1^p}+\frac{1}{2^p}+\frac{1}{3^p}+\ldots+\frac{1}{(p-1)^p}=\frac{n}{m}$$ donde el máximo común divisor de $n$ y $m$ es 1. Demuestre que $p^3$ divide a $n$.

Problema

Pulga saltona --en la recta numérica

Enviado por jmd el 9 de Enero de 2012 - 22:32.

 Una pulga salta sobre puntos enteros de la recta numérica. En su primer movimiento
salta desde el punto 0 y cae en el punto 1. Luego, si en un movimiento la pulga saltó desde el punto $a$ y cayó en el punto $b$, en el siguiente movimiento salta desde el punto $b$ y cae en uno de los puntos $b + (b - a) - 1, b + (b - a), b + (b - a) + 1.$

Demuestre que si la pulga ha caído dos veces sobre el punto $n$, para $n$ entero
positivo, entonces ha debido hacer al menos $t$ movimientos, donde $t$ es el menor
entero mayor o igual que $2\sqrt{n}$.

Problema

Punto de corte de un conjunto de puntos

Enviado por jmd el 6 de Enero de 2012 - 21:23.

Para un conjunto $H$ de puntos en el plano, se dice que un punto $P$ del plano es un punto de corte de $H$ si existen cuatro puntos distintos $A, B, C, D$ en $H$ tales que las rectas $AB$ y $CD$ son distintas y se cortan en $P$. 

Dado un conjunto finito $A_0$ de puntos en el plano, se construye una sucesión de conjuntos $A_1, A_2, A_3,\ldots$ de la siguiente manera: para cualquier $j\geq 0$ , $A_{j+1}$ es la unión de $A_j$ con el conjunto de todos los puntos de corte de $A_j$.

Demostrar que si la unión de todos los conjuntos de la sucesión es un conjunto finito,
entonces para cualquier $j\geq 1$ se tiene que $A_j = A_1$.

Problema

Bisectrices y mediatrices de un escaleno

Enviado por jmd el 6 de Enero de 2012 - 21:20.

Dado un triángulo escaleno $ABC$, sean $A', B'$ y $C'$ los puntos de intersección de las bisectrices interiores de los ángulos $A, B$ y $C$ con los lados opuestos, respectivamente. Sean $A''$ la intersección de $BC$ con la mediatriz de $AA'$, $B''$ la intersección de $AC$ con la mediatriz de $BB'$ y $C''$ la intersección de $AB$ con la mediatriz de $CC'$. Probar que $A'', B''$ y $C''$ son colineales.

Distribuir contenido