Avanzado
Relaciones combinatorias
Sean $r,n$ enteros no negativos tales que $r\leq{n}$.
a) Demostrar que $$\frac{n+1-2r}{n+1-r}C(n,r)$$ es un entero.
b) Demostrar que
$$ \sum_{r=0}^{\lfloor n/2\rfloor}\frac{n+1-2r}{n+1-r}C(n.r)<2^{n-2}$$ para todo $n\geq 9$.
(Nota: $\lfloor x\rfloor$ es el mayor entero menor o igual que x, y $C(n,r)$ es el número de subconjuntos de tamaño r tomados de un conjunto de tamaño n.)
Viaje redondo
Air Michael y Air Patrick operan vuelos directos que conectan Belfast, Cork, Dublin, Galway, Limerick y Waterford. Para cada par de ciudades exactamente una de las aerolíneas opera la ruta (en ambos sentidos) conectando las ciudades.Demostrar que hay cuatro ciudades para las cuales una de las aerolíneas opera un viaje redondo. (Un viaje redondo para las ciudades P,Q,R,S es un viaje que va de P a Q, de Q a R, de R a S y de S a P.)
Una recta variable que pasa por un punto fijo
El punto P está fijo en una circunferencia y el punto Q está fijo en una recta. Un punto variable R se mueve sobre la circunferencia pero sin alinearse con P y Q. La circunferencia por P,Q y R corta a la recta de nuevo en V. Demostrar que la recta VR pasa por un punto fijo.
Líneas isogonales y circunferencias con centro en los lados.
Sea $ABCD$ un cuadrilátero cíclico convexo. Sea $H$ un punto sobre $BD$ tal que $AH$ y $AC$ son líneas isogonales (reflejadas en la bisectriz del ángulo en $A$).
Consideremos $\mathcal{C}_B$ y $\mathcal{C}_D$ las circunferencias con cuerda $HC$ y con sus respectivos centros en $AB$ y $AD$.
Llamemos $S$ y $P$ a la intersección de $\mathcal{C}_B$ con la recta $AB$; el vértice $A$ más cerca de $S$ que de $P$. Análogamente llamemos $T$ y $Q$ a la intersección de $\mathcal{C}_D$ con la recta $AD$; el vértice $A$ más cerca de $T$ que de $Q$. Entonces se satisfacen las siguiente propiedades
P4. IMO 2014 - Concurrencia de dos rectas y una circunferencia
Los puntos $P$ y $Q$ están en el lado $BC$ del triángulo acutángulo $ABC$ de modo que $\angle PAB = \angle BCA$ y $\angle CAQ = \angle ABC$. Los puntos $M$ y $N$ están en las rectas $AP$ y $AQ$, respectivamente, de modo que $P$ es el punto medio de $AM$, y $Q$ es el punto medio de $AN$. Demostrar que las rectas $BM$ y $CN$ se cortan en la circunferencia circunscrita del triángulo $ABC$
P1. IMO 2014 - Sucesión Inifinita
Sea $a_0<a_1< a_2 < \cdots $ una sucesión infinita de números enteros positivos. Demostrar que existe un único entero $n \geq 1$ tal que $$a_n < \frac{a_0+a_1 + \cdots + a_n}{n} \leq a_{n+1}$$
Números divertidos
Un entero positivo n es divertido si para todo divisor positivo d de n, d+2 es un número primo. Encuentre todos los npumeros divertidos que tengan la mayor cantidad posible de divisores.
Todo es cuestión de álgebra
Sean $a,b,c$ y $d$ números todos distintos entre sí, tales que
$\frac{a}{b} +\frac{b}{c}+\frac{c}{d}+\frac{d}{a}=4$ y $ac=bd$
Determine el máximo valor de posible de
$\frac{a}{c} +\frac{b}{d}+\frac{c}{a}+\frac{d}{b}$
Parejas especiales
Una pareja de enteros es especial si es de la forma $(n,n-1)$ o de la forma $(n-1,n)$ con $n$ un entero positivo. Muestra que una pareja $(n.m)$ de enteros positivos que no es especial, se puede representar como suma de dos o más parejas especiales diferentes si y sólo si los enteros $n$ y $m$ satisfacen la desigualdad $n+m\geq(n-m)^2$.
Nota: la suma de dos parejas se define como $(a.b)+(c,d)=(a+c,b+d)$
Un cubo y muchos cubitos
Un cubo de $n \times n \times n$ está construido con cubitos de $1\times 1 \times 1 $, algunos negros y otros blancos, de manera que en cada uno de los subprismas de $n \times 1 \times 1 $, de $1 \times n \times1 $ y de $1 \times 1 \times n$ hay exactamente dos cubitos negros y entre ellos hay un número par (posiblemente 0) de cubitos blancos intermedios. Por ejemplo, en la siguiente ilustración, se muestra una posible rebanada de cubo de $6 \times 6 \times 6 $ (formada por 6 subprismas de $1\times{6}\times{1}$