Avanzado

Problemas de nivel nacional.
Problema

Tangentes si y sólo si perpendiculares

Enviado por German Puga el 13 de Diciembre de 2016 - 17:06.

Sea $ABCD$ un cuadrilátero inscrito en una circunferencia, $l_1$ la recta paralela a $BC$ que pasa por $A$ y $l_2$ la recta paralela a $AD$ que pasa por $B$. La recta $DC$ corta a $l_1$ y $l_2$ en los puntos $E$ y $F$, respectivamente. La recta perpendicular a $l_1$ que pasa por $A$ corta a $BC$ en $P$ y la recta perpendicular a $l_2$ por $B$ corta a $AD$ en $Q$. Sean $\Gamma_1$ y $\Gamma_2$ las circunferencias que pasan por los vértices de los triángulos $ADE$ y $BFC$, respectivamente. Demuestra que $\Gamma_1$ y $\Gamma_2$ son tangentes si y sólo si $DP$ es perpendicular a $CQ$.

Problema

Problema clásico con solución atípica

Enviado por German Puga el 13 de Diciembre de 2016 - 16:52.

En una cuadrícula de $ n \times n$ se escriben los números del 1 al $n^2$ en orden, por renglones, de manera que en el primer renglón aparecen los números del 1 al n, en el segundo los números del n+1 al 2n, y así sucesivamente. Una operación permitida en la cuadrícula consiste en escoger cualesquiera dos cuadraditos que compartan un lado y sumar (o restar) el mismo número entero a los dos números que aparecen esos dos cuadraditos. Por ejemplo, aquí abajo se muestran dos operaciones sucesivas permitidas en una cuadrícula de 4x4: primero restando 7 a los cuadraditos sombreados y luego sumando 5 a los sombreados.

Problema

Cuadritos unitarios distanciados

Enviado por German Puga el 17 de Septiembre de 2016 - 15:42.

Considera un tablero de $n \times n$, con $n \geq 5$. Dos cuadritos unitarios se dice que son distanciados  si no se encuentran en el mismo renglón ni en renglones consecutivos y tampoco en la misma columna ni en columnas consecutivas. Se toman 3 rectángulos con vértices y lados  sobre los puntos y lineas del tablero de manera que si dos cuadritos unitarios pertencen a distintos rectángulos entonces son distanciados . ¿De cuántas maneras es posible hacer esto?

Problema

Problema de Teoría de Números

Enviado por Alexander Israe... el 26 de Enero de 2016 - 11:26.
Resolver la ecuación $x^{3}=3^{y}7^{z}+8$ para enteros positivos $x, y, z$.
Problema

Problema 6. 29a Olimpiada Mexicana de Matemáticas

Enviado por vmp el 25 de Noviembre de 2015 - 12:57.
Sea $n$ un entero positivo y sean $d_1,d_2, \ldots , d_k$ todos sus divisores positivos ordenados de menor a mayor. Considera el número $$f(n)=(-1)^{d_1}d_1+(-1)^{d_2}d_2+\ldots+(-1)^{d_k}d_k.$$
Por ejemplo, los divisores positivos de 10 son $1,2,5$ y $10$, así que $$f(10)=(-1)^{1}\cdot 1+(-1)^{2}\cdot 2+ (-1)^{5}\cdot 5 +(-1)^{10}\cdot 10=6.$$
Supón que $f(n)$ es una potencia de $2$. Muestra que si $m$ es un entero mayor que $1$, entonces $m^2$ no divide a $n$.
 
Problema

Problema 2. 29a Olimpiada Mexicana de Matemáticas

Enviado por vmp el 24 de Noviembre de 2015 - 11:15.

Sean $n$ un entero positivo y $k$ un entero entre $1$ y $n$. Se tiene un tablero de $n \times n$ color blanco. Se hace el siguiente proceso. Se dibujan $k$ rectángulos con lados de longitud entera, con lados paralelos a los del tablero y tales que su esquina superior derecha coincide con la del tablero. Luego, estos $k$ rectángulos se rellenan de negro. Esto deja una figura blanca en el tablero. ¿Cuántas figuras blancas diferentes podemos obtener, que no se puedan obtener haciendo el proceso con menos de $k$ rectángulos?

Problema

Problema 1 - IMO 2015 - Conjunto de puntos y mediatrices.

Enviado por jesus el 14 de Julio de 2015 - 17:26.

Decimos que un conjunto finito $\cal{S}$ de puntos en el plano es equilibrado si para cada dos puntos distintos $A$ y $B$ en $\cal{S}$ hay un punto $C$ en $\cal{S}$ tal que $AC = BC$. Decimos que $\cal{S}$ es libre de centros si para cada tres puntos distintos $A$, $B$, $C$ en $\cal{S}$ no existe ningún punto $P$ en $\cal{S}$ tal que $PA=PB=PC$.

  1. Demostrar que para todo $n \geq 3$ existe un conjunto de $n$ puntos equilibrado.
  2. Determinar todos los enteros $n \geq 3$ para los que existe un conjunto de $n$ puntos equilibrado y libre de centros.
Problema

Uno de si y solo si, con reflexión

Enviado por German Puga el 18 de Abril de 2015 - 20:38.

Sea $H$ el ortocentro y $G$ el gravicentro del triángulo acutángulo $\triangle ABC,$ con $ AB \neq AC.$ La linea $AG$ intersecta al circuncirculo de $\triangle ABC$ en $A$ y en $P$. Sea $P'$ la reflexión de $P$ en la línea $BC.$ Demuestra que $\angle CAB = 60°$ si y solo si $HG = GP'.$

Problema

Suma de cualesquiera dos consecutivos, cuadrado

Enviado por German Puga el 18 de Abril de 2015 - 20:05.

Determina si existe una sucesión infinita $a_1,a_2,\dots$ de enteros positivos que satisface la igualdad $$a_{n+2} = a_{n+1} + \sqrt{a_{n+1} + a_n}$$ para todo entero positivo n.

Problema

Máximo común divisor menor a n

Enviado por German Puga el 18 de Abril de 2015 - 19:48.

Sean m enteros mayores a 1, y sean $a_1,a_2,\dots,a_m$ enteros positivos menores o iguales a $n^m$. Demuestra que existen enteros positivos $b_1,b_2,\dots,b_m$ menores o iguales a n, tales que $$ mcd( a_1+b_1,a_2+b_2,\dots,a_m+b_m) < n,$$ donde $mcd(x_1,x_2,\dots,x_m)$ denota el máximo común divisor de $x_1,x_2,\dots,x_m$.

Distribuir contenido