Avanzado

Problemas de nivel nacional.
Problema

Una recta variable que pasa por un punto fijo

Enviado por jmd el 3 de Septiembre de 2014 - 12:40.

El punto P está fijo en una circunferencia y el punto Q está fijo en una recta. Un punto variable R se mueve sobre la circunferencia pero sin alinearse con P y Q. La circunferencia por P,Q y R corta a la recta de nuevo en V. Demostrar que la recta VR pasa por un punto fijo.

Problema

Líneas isogonales y circunferencias con centro en los lados.

Enviado por jesus el 26 de Julio de 2014 - 09:17.

Sea $ABCD$ un cuadrilátero cíclico convexo. Sea $H$ un punto sobre $BD$ tal que $AH$ y $AC$ son líneas isogonales (reflejadas en la bisectriz del ángulo en $A$).

Consideremos $\mathcal{C}_B$ y $\mathcal{C}_D$ las circunferencias con cuerda $HC$ y con sus respectivos centros en $AB$ y $AD$.

Llamemos $S$ y $P$ a la intersección de $\mathcal{C}_B$ con la recta $AB$; el vértice $A$ más cerca de $S$ que de $P$. Análogamente llamemos $T$ y $Q$ a la intersección de $\mathcal{C}_D$ con la recta $AD$; el vértice $A$ más cerca de $T$ que de $Q$. Entonces se satisfacen las siguiente propiedades

Problema

P4. IMO 2014 - Concurrencia de dos rectas y una circunferencia

Enviado por jesus el 9 de Julio de 2014 - 10:23.

Los puntos $P$ y $Q$ están en el lado $BC$ del triángulo acutángulo $ABC$ de modo que $\angle PAB = \angle BCA$ y $\angle CAQ = \angle ABC$. Los puntos $M$ y $N$ están en las rectas $AP$ y $AQ$, respectivamente, de modo que $P$ es el punto medio de $AM$, y $Q$ es el punto medio de $AN$. Demostrar que las rectas $BM$ y $CN$ se cortan en la circunferencia circunscrita del triángulo $ABC$

Problema

P1. IMO 2014 - Sucesión Inifinita

Enviado por jesus el 9 de Julio de 2014 - 10:08.

Sea $a_0<a_1< a_2 < \cdots $ una sucesión infinita de números enteros positivos. Demostrar que existe un único entero $n \geq 1$ tal que $$a_n < \frac{a_0+a_1 + \cdots + a_n}{n} \leq a_{n+1}$$

Problema

Números divertidos

Enviado por jmd el 16 de Junio de 2014 - 16:37.

Un entero positivo n es divertido si para todo divisor positivo d de n, d+2 es un número primo. Encuentre todos los npumeros divertidos que tengan la mayor cantidad posible de divisores.

Problema

Todo es cuestión de álgebra

Enviado por Paola Ramírez el 13 de Junio de 2014 - 03:25.

Sean $a,b,c$ y $d$ números todos distintos entre sí, tales que
$\frac{a}{b} +\frac{b}{c}+\frac{c}{d}+\frac{d}{a}=4$ y $ac=bd$

Determine el máximo valor de posible de
$\frac{a}{c} +\frac{b}{d}+\frac{c}{a}+\frac{d}{b}$

Problema

Parejas especiales

Enviado por jmd el 29 de Noviembre de 2013 - 20:08.

Una pareja de enteros es especial si es de la forma $(n,n-1)$ o de la forma $(n-1,n)$ con $n$ un entero positivo. Muestra que una pareja $(n.m)$ de enteros positivos que no es especial, se puede representar como suma de dos o más parejas especiales diferentes si y sólo si los enteros $n$ y $m$ satisfacen la desigualdad $n+m\geq(n-m)^2$.

Nota: la suma de dos parejas se define como $(a.b)+(c,d)=(a+c,b+d)$

Problema

Un cubo y muchos cubitos

Enviado por jmd el 29 de Noviembre de 2013 - 19:29.

Un cubo de $n \times n \times n$ está construido con cubitos de  $1\times 1 \times 1 $, algunos negros y otros blancos, de manera que en cada uno de los subprismas de $n \times 1 \times 1 $, de $1 \times n \times1 $ y de  $1 \times 1 \times n$ hay exactamente dos cubitos negros y entre ellos hay un número par (posiblemente 0) de cubitos blancos intermedios. Por ejemplo, en la siguiente ilustración, se muestra una posible rebanada de cubo de  $6 \times 6 \times 6 $ (formada por 6 subprismas de $1\times{6}\times{1}$

Problema

Elección con restricción negativa

Enviado por jmd el 25 de Noviembre de 2013 - 21:37.

¿Cuál es la mayor cantidad de elementos que puedes tomar del conjunto de números
enteros $\{1,2, . . . ,2012,2013\}$, de tal manera que entre ellos no haya tres distintos,
digamos $a, b, c$, tales que $a$ sea divisor o múltiplo de $b−c$?
 

Problema

Competencia entre 7 jugadores!!!

Enviado por cuauhtemoc el 28 de Mayo de 2012 - 17:38.

Se quiere diseñar una competencia entre 7 jugadores de tal manera que de cualquier colección de 3 de ellos al menos dos compitan entre sí. ¿Cuál es el mínimo número de juegos con el que se puede lograr esta condición?

Distribuir contenido