Avanzado

Problemas de nivel nacional.
Problema

Secuencia de conjuntos no vacios (OMM 2021 P6)

Enviado por jesus el 18 de Diciembre de 2021 - 15:32.

Determina todos los conjuntos no vacíos $C_1, C_2, C_3, \dots$, tales que cada uno de ellos tiene un número finito de elementos y todos sus elementos son enteros positivos, con la siguiente propiedad: Para cualesquiera enteros positivos $m$ y $n$, la cantidad de enteros positivos en el conjunto $C_m$ más la cantidad de enteros positivos en $C_n$ es igual a la suma de los elementos en el conjunto $C_{m+n}$.

Nota: Al denotar con $|C_k|$ la cantidad de elementos de $C_k$ y con $S_k$ la suma de los elementos de $C_k$, la condición del problema es que para $m$ , $n$ enteros positivos se cumple

$$|C_n|+|C_m| = S_{m+n}$$
Problema

Números digitales (OMM 2021 P5)

Enviado por jesus el 18 de Diciembre de 2021 - 00:35.

Para cada entero $n>0$ con expansión decimal $\overline{a_1a_2 \dots a_k}$ definimos $s(n)$ como sigue:

  • Si k es par, $s(n) = \overline{a_1a_2} + \overline{a_3a_4} + \dots +\overline{a_{k-1}a_k} $
  • Si k es impar, $s(n) = a_1 + \overline{a_2a_3} + \overline{a_4a_5} + \dots +\overline{a_{k-1}a_k} $

Por ejemplo, si $n=123$ entonces $s(n) = 1 + 23 = 24$ y si $n=2021$ entonces $s(n) = 20+21 = 41$.

Decimos que este $n$ es digital si $n$ es múltiplo de $s(n)$. Muestra que entre cualesquiera 198 enteros positivos consecutivos, todos ellos menores que 2000021, hay uno de ellos que es digital.

Problema

La hormiga, el mago y la lava (OMM 2021 P3)

Enviado por jesus el 21 de Noviembre de 2021 - 22:30.

Sean $m,n \geq 2$ dos enteros. En una cuadrícula de $m \times n$, una hormiga empieza en cuadrito inferior izquierdo y quiere camina al cuadradito superior derecho. Cada paso que da la hormiga debe ser a un cuadrito adyacente, de acuerdo a las siguientes posibilidades $\uparrow$, $\rightarrow$ y $\nearrow$. Sin embargo, un malvado mago ha dejado caer lava desde arriba y ha destruido algunos cuadritos de forma tal que:

Problema

Es punto medio si y sólo si el otro es punto medio (OMM 2021 P2)

Enviado por jesus el 21 de Noviembre de 2021 - 00:17.

Sea $ABC$ un triángulo tal que $\angle ACB > 90^\circ$ y sea $D$ el punto de la recta $BC$ tal que $AD$ es perpendicular a $BC$. Considere $\Gamma$ la circunferencia de diámetro $BC$. Una recta que pasa por $D$ es tangente a la circunferencia $\Gamma$ en $P$, corta al lado $AC$ en $M$ (quedando $M$ entre $A$ y $C$) y corta al lado $AB$ en $N$.

Demuestra que $M$ es punto medio de $DP$ si, y sólo si $N$ es punto medio de $AB$.

Problema

Problema 1 - IMO 2019 - Determinar todas las función enteras.

Enviado por jesus el 19 de Junio de 2020 - 18:41.

Sea $\mathbb{Z}$ el conjunto de los números enteros. Determinar todas las funciones $f: \mathbb{Z} \to \mathbb{Z}$ tales que, para todos los enteros $a$ y $b$, $$f(2a) + 2f(b) = f (f (a + b)).$$

Problema

El seis de la ORO. (Paisanos)

Enviado por German Puga el 9 de Diciembre de 2017 - 00:45.

Un cambio para un número natural $n$ consiste en agregar una pareja de ceros entre dos dígitos o al final de la representación decimal de $n$. Un paisano de $n$ es un número que se puede obtener haciendo uno o más cambios en $n$. Por ejemplo 40041 y 44001 son paisanos de 441. (Nota: 441 no es paisano de 44100). Determina todos los números naturales $n$ para los cuales existe un número natural $m$ con la propiedad de que $n$ divide a $m$ y a todos los paisanos de $m$. 

Problema

Tangentes si y sólo si perpendiculares

Enviado por German Puga el 13 de Diciembre de 2016 - 18:06.

Sea $ABCD$ un cuadrilátero inscrito en una circunferencia, $l_1$ la recta paralela a $BC$ que pasa por $A$ y $l_2$ la recta paralela a $AD$ que pasa por $B$. La recta $DC$ corta a $l_1$ y $l_2$ en los puntos $E$ y $F$, respectivamente. La recta perpendicular a $l_1$ que pasa por $A$ corta a $BC$ en $P$ y la recta perpendicular a $l_2$ por $B$ corta a $AD$ en $Q$. Sean $\Gamma_1$ y $\Gamma_2$ las circunferencias que pasan por los vértices de los triángulos $ADE$ y $BFC$, respectivamente. Demuestra que $\Gamma_1$ y $\Gamma_2$ son tangentes si y sólo si $DP$ es perpendicular a $CQ$.

Problema

Problema clásico con solución atípica

Enviado por German Puga el 13 de Diciembre de 2016 - 17:52.

En una cuadrícula de $ n \times n$ se escriben los números del 1 al $n^2$ en orden, por renglones, de manera que en el primer renglón aparecen los números del 1 al n, en el segundo los números del n+1 al 2n, y así sucesivamente. Una operación permitida en la cuadrícula consiste en escoger cualesquiera dos cuadraditos que compartan un lado y sumar (o restar) el mismo número entero a los dos números que aparecen esos dos cuadraditos. Por ejemplo, aquí abajo se muestran dos operaciones sucesivas permitidas en una cuadrícula de 4x4: primero restando 7 a los cuadraditos sombreados y luego sumando 5 a los sombreados.

Problema

Cuadritos unitarios distanciados

Enviado por German Puga el 17 de Septiembre de 2016 - 16:42.

Considera un tablero de $n \times n$, con $n \geq 5$. Dos cuadritos unitarios se dice que son distanciados  si no se encuentran en el mismo renglón ni en renglones consecutivos y tampoco en la misma columna ni en columnas consecutivas. Se toman 3 rectángulos con vértices y lados  sobre los puntos y lineas del tablero de manera que si dos cuadritos unitarios pertencen a distintos rectángulos entonces son distanciados . ¿De cuántas maneras es posible hacer esto?

Problema

Problema de Teoría de Números

Enviado por Alexander Israe... el 26 de Enero de 2016 - 12:26.
Resolver la ecuación $x^{3}=3^{y}7^{z}+8$ para enteros positivos $x, y, z$.
Distribuir contenido