XX OIM 2005
La recta pasa por el ortocentro
Sea $O$ el circuncentro de un triángulo acutángulo $ABC$ y $A_1$ un punto en el
arco menor $BC$ de la circunferencia circunscrita al triángulo $ABC$. Sean $A_2$ y
$A_3$ puntos en los lados $AB$ y $AC$ respectivamente, tales que $\angle{BA_1A_2} = \angle{OAC}$ y $\angle{CA_1A_3} = \angle{OAB}$. Demuestre que la recta $A_2A_3$ pasa por el ortocentro del triángulo $ABC$.
Coloreo roji-azul de 2n puntos alineados
Dado un entero positivo $n$, en un plano se consideran $2n$ puntos alineados $A_1, A_2,\ldots, A_{2n}$. Cada punto se colorea de azul o rojo mediante el siguiente procedimiento:
- En el plano dado se trazan $n$ circunferencias con diámetros de extremos $A_i$ y $A_j$ , disyuntas dos a dos.
- Cada $A_k, 1\leq k\leq 2n$, pertenece exactamente a una circunferencia.
- Se colorean los puntos de modo que los dos puntos de una misma
circunferencia lleven el mismo color.
Determine cuántas coloraciones distintas de los $2n$ puntos se pueden obtener al variar las $n$ circunferencias y la distribución de los dos colores.
Operación residual sobre dos enteros positivos
Dados dos enteros positivos $a$ y $b$, se denota por $(a\nabla b)$ al residuo que se obtiene al dividir $a$ entre $b$. Este residuo es uno de los números $0, 1,\ldots, b - 1$. Encuentre todas las parejas de números $(a, p)$ tales que $p$ es primo y se cumple que $$(a\nabla p) + (a\nabla 2p) + (a\nabla 3p) + (a\nabla 4p) = a + p.$$
Ecuación de inversos
Sea $p > 3$ un número primo. Si $$\frac{1}{1^p}+\frac{1}{2^p}+\frac{1}{3^p}+\ldots+\frac{1}{(p-1)^p}=\frac{n}{m}$$ donde el máximo común divisor de $n$ y $m$ es 1. Demuestre que $p^3$ divide a $n$.
Pulga saltona --en la recta numérica
Una pulga salta sobre puntos enteros de la recta numérica. En su primer movimiento
salta desde el punto 0 y cae en el punto 1. Luego, si en un movimiento la pulga saltó desde el punto $a$ y cayó en el punto $b$, en el siguiente movimiento salta desde el punto $b$ y cae en uno de los puntos $b + (b - a) - 1, b + (b - a), b + (b - a) + 1.$
Demuestre que si la pulga ha caído dos veces sobre el punto $n$, para $n$ entero
positivo, entonces ha debido hacer al menos $t$ movimientos, donde $t$ es el menor
entero mayor o igual que $2\sqrt{n}$.
Sistema de ecuaciones
Determine todas las ternas de números reales $(x, y, z)$ que satisfacen el siguiente
sistema de ecuaciones:
$$xyz = 8,$$
$$x^2y + y^2z + z^2x = 73,$$
$$x(y - z)^2 + y(z - x)^2 + z(x - y)^2 = 98.$$