X OIM 1995

Problema

Grado de repulsión de una función circular

Enviado por jmd el 10 de Diciembre de 2011 - 15:44.

Una función $f: N \mapsto N$ es circular si para cada $p$ en $N$ existe $n$ en $N$ con $n\leq p$ tal que:
$$\underbrace{f^n(p) = f(f(\ldots f(p) \ldots )))}_{n veces}=p$$
La función $f$ tiene grado de repulsión $k$, $0 < k < 1$, si para cada $p$ en $N$, $f^i(p) \neq p$ para $i\leq [k\cdot p]$. Determine el mayor grado de repulsión que puede tener una función circular. Nota: $[x]$ indica el mayor entero menor o igual que $x$.

 

Problema

... y se forma un trapecio isósceles...

Enviado por jmd el 10 de Diciembre de 2011 - 15:38.

La circunferencia inscrita en el triángulo $ABC$ es tangente a $BC, CA$ y $AB$ en $D, E$ y $F$, respectivamente. Suponga que dicha circunferencia corta de nuevo a $AD$ en su punto medio $X$, es decir, $AX = XD$. Las rectas $XB$ y $XC$ cortan de nuevo a la circunferencia inscrita en $Y$ y en $Z$, respectivamente. Demuestre que $EY = FZ$.

Problema

Dominio eficiente de un tablero

Enviado por jmd el 10 de Diciembre de 2011 - 15:36.

En un tablero de $m\times m$ casillas se colocan fichas. Cada ficha colocada en el tablero "domina" todas las casillas de la fila (--), la columna (|) y la diagonal (\), a la que pertenece. Determine el menor número de fichas que deben colocarse para que queden "dominadas" todas las casillas del tablero. Nota: la ficha no "domina" la diagonal (/).

Problema

Perpendicular común a dos rectas en el espacio

Enviado por jmd el 10 de Diciembre de 2011 - 15:34.

Sean $r$ y $s$ dos rectas ortogonales y que no están en el mismo plano. Sea $AB$ su perpendicular común, donde $A$ pertenece a $r$ y $B$ a $s$. Se considera la esfera de diámetro $AB$. Los puntos $M$, de la recta $r$ y $N$, de la recta $s$, son variables, con la condición de que $MN$ sea tangente a la esfera en un punto $T$. Determine el lugar geométrico de $T$. Nota: el plano que contiene a $B$ y $r$ es perpendicular a $s$.

Problema

Condiciones extravagantes para n+1 números

Enviado por jmd el 10 de Diciembre de 2011 - 15:32.

Sea $n$ un número entero mayor que 1. Determine los números reales $x_1, x_2,\ldots, x_n\leq 1$ y $x_{n+1}>0$, que verifiquen las dos condiciones siguientes:
$$\sqrt{x_1}+\sqrt[3]{x_2}+\ldots+\sqrt[n-1]{x_n}=n\sqrt[2]{x_{n+1}}$$
$$\frac{x_1+x_2+ \ldots +x_n}{n}=x_{n+1}$$

Problema

Para entender la pregunta primero tienes que responderla

Enviado por jmd el 10 de Diciembre de 2011 - 15:27.

Determine los posibles valores de la suma de los digitos de todos los cuadrados perfectos.

Distribuir contenido