Combinatoria
P5. Jugando con ecuaciones raras
Alicia y Bazza juegan al $inekoalaty$, un juego para dos jugadores cuyas reglas dependen de un número real positivo $\lambda$ conocido por ambos. En el turno $n$ del juego (comenzando con $n=1$) ocurre lo siguiente:
- Si $n$ es impar, Alicia elije un número real no negativo $x_n$ tal que: $$x_1 + x_2 + \dots + x_n \leq \lambda n$$
- Si $n$ es par, Bazza elije un número real no negativo $x_n$ tal que: $$x_1^2 + x_2^2 + \dots + x_n^2 \leq n$$
Si un jugador no puede elegir un $x_n$ adecuado, el juego termina y el otro jugador gana. Si el juego continúa indefinidamente ningún jugador gana. Ambos jugadores conocen todos los números elegidos.
P1. Rectas soleadas
Una recta del plano se llama $soleada$ si no es paralela ni al eje $x$, ni al eje $y$, ni a la recta $x+y=0$.
Sea $n \geq 3$ un entero dado. Determine todos los enteros no negativos $k$ para los que existen $n$ rectas distintas del plano tal que:
- Para cualesquiera enteros positivos $a$ y $b$ con $a+b \leq n+1$, el punto $(a,b)$ está en al menos una de las rectas
- Exactamente $k$ de estas $n$ rectas son soleadas
P2. Producto de primos y MCD.
Los conjuntos $A, \ B, \ C$ y $D$ cumplen las siguientes condiciones:
- Sus elementos son números enteros del 1 al 20.
- Cada conjunto tiene 4 elementos y no hay un mismo número en dos o más conjuntos distintos.
- Sean $P_a, \ P_b, \ P_c, \ P_d$ los productos de los números en los conjuntos $A, B, C, D$ respectivamente, y $Q_a, Q_b, Q_c, Q_d$ el producto de los factores primos distintos de $P_a, P_b, P_c, P_d$ respectivamente.
Se cumple que:
$$P_a \cdot P_b = P_c \cdot P_d$$
$$mcd(Q_a,Q_b)\cdot mcd(Q_c,Q_d) \leq 3$$
¿De cuántas maneras se pueden elegir los conjuntos?
P1. Desperdiciando agua en garrafones infinitos
Luna y sus amigas estan jugando con agua. Tienen $n$ garrafones vacíos de capacidad infinita y $m$ botellas llenas de agua, con $m>n$. Las botellas están ordenadas y numeradas $1, 2, \dots, m$, de la más pequeña a la más grande. La botella $i$ tarda exactamente $i$ segundos en vaciarse, para $1 \leq i \leq m$. Sus amigas van a vaciar el agua de las botellas en los garrafones siguiendo estas reglas:
P1. Brainrot matematico.
¿De cuántas formas puedo ordenar las letras de "$tralalerotralala$" de tal forma que las letras de "$tra$" respeten su orden? Ejemplo, $tratralalerolala$ es válido, pero $tralalerotarlala$ no lo es.
P6. Borrando pizarrón hasta que ambos sumen un múltiplo de 3
Ana y Beto juegan en un pizarrón donde se han colocado los números del 1 al 2024. En cada turno Ana escoge tres números $a,b,c$ escritos en el pizarrón y en su turno Beto los borra y reescribe alguno de los números:
$$a+b-c, a-b+c, b+c-a$$
El juego termina cuando quedan solamente dos números y Ana no puede hacer su jugada. si la suma de los números que quedan al final es múltiplo de 3, Beto gana. En caso contrario, Ana gana. ¿Quién puede asegurar su victoria?
P5. Conjuntos infinitos iguales y uno en sucesión aritmética
Sean $A$ y $B$ dos conjuntos finitos de números reales positivos tales que:
- Para cualquier par de elementos $u \geq v$ de $A$, se cumple que $u+v$ es elemento de $B$
- Para cualquier par de elementos $s > t$ de $B$, se cumple que $s-t$ es un elemento de $A$
Prueba que $A=B$ o existe un número real $r$ tal que $B=\{2r, 3r, 4r, \dots \}$
P1. Rompecabezas especial
En la figura se, se muestran las 6 maneras distintas en que se puede colorear un cuadrado de $1 \times 1$ subdividido en 4 cuadritos de $\frac{1}{2} \times \frac{1}{2}$ con cuatro colores distintos (dos coloreados se consideran iguales si es posible rotar uno para obtener el otro). Cada uno de estos cuadrados de $1 \times 1$ se usará como pieza de un rompecabezas. Las piezas se pueden rotar, pero no reflejar. Dos piezas $encajan$ si al unirlas por un lado completo, los cuadritos de $\frac{1}{2} \times \frac{1}{2}$ a ambos lados del lado por el que se unen son del mismo color (ver ejemplos). ¿Es posible armar un rompecabezas de $3 \times 2$ utilizando cada pieza exactamente una vez y de forma que todas las piezas adyacentes encajen?
P6. La lista de Germán
Sea $n$ un entero positivo. Germán tiene una lista de $n$ números enteros. Si suma todos sus números, obtiene 6. Si los multiplica, también obtiene 6. Encuentra todos los posibles valores para $n$.
P4. Ceros y Unos en un pizarrón.
- ¿Para qué valores de $n$ te puede quedar un número par?
- ¿Para qué valores de $n$ te puede quedar un número impar?
