Números
Diez consecutivos son divisores --pero no 11
Encuentra todos los enteros positivos $N$ con la siguiente propiedad: entre todos los divisores positivos de $N$, hay 10 números consecutivos, pero no 11.
La arista es el MCD de sus vértices
En los vértices de un cubo están escritos 8 enteros positivos distintos, uno
en cada vértice. Y en cada una de las aristas está escrito el máximo común
divisor de los números que están en los 2 vértices que la forman. Sean $A$ la suma de los números escritos en las aristas y $V$ la suma de los números escritos en los vértices.
- (a) Muestra que $\frac{2}{3}A\leq V$.
- (b) ¿Es posible que $A = V$?
Expresado como suma de potencias --de sus primeros dos divisores
Sean $1=d_1 < d_2 < d_3 \cdots < d_k = n$ los divisores del entero positivo $ n $. Encuentra todos los números $ n $ tales que $n = d_2 ^ 2 + d_3^3$.
P1 OMM 2006. Los parientes de un número son sus múltiplos
Sea $ab$ un número de dos dígitos. Un entero positivo $ n $ es “pariente” de $ab$ si:
- El dígito de las unidades de $n$ también es $b$.
- Los otros dígitos de $n$ son distintos de cero y suman $a$.
Por ejemplo, los parientes de 31 son 31, 121, 211 y 1111. Encuentra todos los números de dos dígitos que dividen a todos sus parientes .
P3 OMM 2005. Infinidad de enteros en sucesión de fracciones
Determina todas las parejas $(a,b)$ de enteros distintos de cero para las cuales es posible encontrar un entero positivo $x$ primo relativo con $b$ y un entero cualquiera $y$, tales que en la siguiente lista hay una infinidad de números enteros:
$$\frac{a+xy}{b},\frac{a+xy^2}{b^2},\frac{a+xy^3}{b^3},\ldots,\frac{a+xy^n}{b^n},\ldots$$
P5 OMM 2002. Ternas compatibles
Tres enteros distintos forman una terna compatible si alguno de ellos, digamos $ n $, cumple que cada uno de los otros dos es, o bien divisor, o bien múltiplo de $ n $. Para cada terna compatible de números entre 1 y 2002 se calcula la suma de los tres números de la terna. ¿Cuál es la mayor suma obtenida? ¿Cuáles son las ternas en las que se obtiene la suma máxima?
P3 OMM 2002. Residuos cuadráticos (módulo 4)
Sean $n$ un entero positivo. ¿Tiene $n^2$ más divisores positivos de la forma $4k+1$ o de la forma $4k-1$?
Problema 3, IMO 2010
Sea $\mathbb{N}$ el conjunto de los enteros positivos. Determine todas las funciones $g : \mathbb{N} \to \mathbb{N}$ tales que $$\left( g(m) + n\right) \left(m + g(n) \right) $$
es un cuadrado perfecto para todo $m, n \in \mathbb{N}$.
P4 OMM 2001. Lista de residuos cuadráticos
Dados dos enteros positivos $n$ y $a$, se forma una lista de 2001 números como sigue:
- el primer número es $a$;
- a partir del segundo, cada número es el residuo que se obtiene al dividir al cuadrado del anterior entre $n$.
A los números de la lista se les ponen los signos $+$ y $-$, alternadamente
empezando con $+$. Los números con signo así obtenidos se suman, y a esa suma se le llama suma final para $n$ y $a$.
¿Para qué enteros $n \geq 5$ existe alguna $a$ tal que $2 \leq a \leq n/2$, y la suma final para $n$ y $a$ es positiva?
P1 OMM 2001. Múltiplos de 3 y 7 con dígitos 3 o 7
Encuentra todos los números de 7 dígitos que son múltiplos de 3 y de 7,
y cada uno de cuyos dígitos es 3 o 7.