Problemas
También puedes compartirnos alguno de tus problemas favoritos:
Altura de un triángulo rectángulo
Sea AP la altura de A respecto a la hipotenusa BC del triángulo rectángulo ABC. Demostrar que se cumplen las proporciones PB/BA=BA/BC y BP/PA=PA/PC.
Cuerda común y línea de centros
La línea de centros (recta que pasa por los centros) de dos círculos que se intersectan es mediatriz de su cuerda común.
Cuerda y tangentes comunes
La cuerda común de dos círculos pasa por el punto medio de la tangente común a los círculos. Demostrarlo.
Círculos en dos lados de un triángulo
Tomando como diámetros los lados AB y AC del triángulo ABC, se trazan sendos círculos. Demostrar que su otro punto de intersección (aparte de A) está sobre el lado BC.
Lema de las alturas (para cíclicos)
Cualesquiera dos vértices de un triángulo son concíclicos con los pies de sus alturas.
Problema 5 IMO 2005
Sea $ ABCD$ un cuadrilatero convexo con $ BC=DA $ y además las rectas $ BC,DA $ no son paralelas. Consideremos dos puntos variables $ E,F $ sobre $ BC, DA $ respectivamente, que satisfacen $ BE=DF$ . Sea $P$ la interseccion de $ AC, BD.$ Las rectas $BD$ y $EF$ se intersectan en $Q$ y las rectas $AC$ y $EF$ se intersectan en $R$.
Uno de Ciclicos (tema del 1er entrenamiento 09)
Sea AB diametro de una semicircunferencia. Un punto M sobre la semicircunferencia y K un punto spbre AB. Una circunferencia con centro P pasa por A,M,K, y otra circunferencia de centro Q pasa por M,K,B. Demostrar que MPKQ es un cuadrilatero ciclico.

Probar simediana
Considera un triangulo $ ABC $ Con $ BD $ su bisectriz interna ( $D$ sobre $AC$) Sea $E$ el punto donde se intersectan $BD$ y el circuncirculo del triangulo $ ABC $. El circulo de diametro $DE$ corta al circuncirculo del triangulo $ ABC $ en los puntos $D,F$ demuestra que $BF$ es la simediana del triangulo $ ABC $

Problema 2 BMO 2009
Sea $MN$ una línea paralela al lado $ BC $ del triángulo $ ABC $, con $ M $ sobre el lado $AB$ y $ N $ sobre el lado $AC$. Las íineas $BN$ y $CM$ se intersectan en un punto $P$. Los circuncírculos de los triángulos $BPM$ y $CPN$ se intersectan en $P$ y $Q$. Demostrar que $\angle{BAQ}=\angle{CAP}$

Otro de un cuadrado, dentro de otro cuadrado.
Sea ABCD un cuadrado de centro O. Sean P, Q, R y S puntos en DA, AB, BC y CD, repectivamente, tales que P,O y R son colineales; y Q, O y S también lo son (colineales), y de manera que PR es perpendicular a QS. Demostrar que el cuadrilátero PQRS es un cuadrado.
L1.P21 (Cuadrado en el centro de un cuadrado)
Los puntos medios $L,M,N,O$ de los lados $QR,RS,SP,PQ$ de un cuadrado $PQRS$ se unen con con un segmento de recta a los vértices de éste de manera que se forme un cuadrado $P'Q'R'S'.$ Calcular la razón de áreas de los dos cuadrados.
L1.P19 (Doblez)
Un triángulo rectángulo isósceles, con lados iguales de medida 2, ha sido recortado de una hoja de papel que es gris de un lado y cuadriculada del otro.
L1.P15 (Tangente a un círculo)
Una recta en el plano cartesiano pasa por el punto (3,0) y es tangente al círculo con centro en el origen de coordenadas y radio 1. Encontrar el punto en que la recta corta el eje vertical (de ordenadas).
L1.P14 (Generalización del L1.P13)
Dos circunferencias de radios $R$ y $ r $ son tangentes exteriormente. Encontrar la longitud de su tangente común en términos de los radios.
L1.P13 (Tangente común de dos circunferencias tangentes)
Dos circunferencias de radios 9 y 4 son tangentes exteriormente. Encontrar la longitud de su tangente común.
L1.P11 (Radio del incírculo de un 3,4,5)
Calcular el radio del incírculo de un triángulo cuyos lados miden 3,4,5.
L1.P10 (Equilátero en un lado)
Sobre el lado $AB$ del cuadrado $ABCD$, se traza un triángulo equilátero externo $ABE$. Calcular la medida del ángulo $AED.$
L1.P5 (Encontrar ángulo con isósceles)
En un triángulo $ ABC $ los lados $ AC $ y $ BC $ son iguales. Un punto $D$ en el lado $ BC $ es tal que los triángulos $ABD$ y $ACD$ son isósceles. Si $AD=AB$ ¿cuánto mide el ángulo en $B$?
L1.P2 (Lado de un cuadrado)
En un círculo de centro $O$ y radio $5k$, se traza un cuadrado. Uno de sus lados es cuerda de la circunferencia y el lado opuesto a la cuerda pasa por el centro $O$. Calcular la longitud del lado del cuadrado en términos de $k$.
Problema 5 TZALOA
Sean H,O el ortocentro y circuncentro del triangulo ABC con AB distinto de AC. Sea T la circunferencia circunscrita al triangulo ABC. La prolongacion de la mediana AM del triangulo ABC, corta a T en el punto N y la circunferencia de diametro AM corta a T en los puntos A y P. Demuestra que las rectas AP, BC y OH son concurrentes si y solo si AH=NH
