Problemas - Lógica

Problema

Ten cuidado con las salsas

Enviado por Samuel Elias el 11 de Julio de 2022 - 16:31.

El siguiente cuadrado tenía los números del 1 al 9 escritos en él, pero se manchó con catsup y ahora se ve así. Por suerte sabemos que la suma de los vecinos del 9 era 15. ¿Cuál es la suma de los vecinos del 8?
Nota: Dos números se consideran vecinos si los cuadrados en los que están escritos comparten un lado.


 

Problema

Torneo de Ping Pong

Enviado por Samuel Elias el 11 de Julio de 2022 - 16:24.

En una escuela hubo un torneo de Ping Pong. La escuela cuenta con 2 mesas para jugar y en total hubo 6 partidos. Los partidos duraron 8, 10, 12, 17, 21 y 22 minutos y es posible comenzar un partido justo al terminar el anterior. Si el torneo comenzó a las 9:00 de la mañana, ¿a qué hora es lo más temprano que pudo terminar el torneo?

Problema

¿Seguro que sabes contar?

Enviado por German Puga el 3 de Julio de 2016 - 14:05.

En un concurso de Matemáticas hay 20 participantes, alumnos de Primaria, Secundaria y Bachillerato que se sentarán en una mesa redonda. Hay igual cantidad de alumnos de Secundaria que de Bachillerato. Ya sentados se dividirán en dos equipos con cantidad par de alumnos sentados uno junto a otro (es decir, se pueden tomar de la mano todos los miembros del equipo y formarán una sola cadena). Ellos se dieron cuenta que no importa cómo se formen esos equipos, siempre habrá uno con más alumnos de Secundaria que de Bachillerato. ¿Cuántos alumnos de Primaria hay?

Problema

Un dominó binario y marciano

Enviado por German Puga el 3 de Junio de 2016 - 18:46.

 Un dominó binario y marciano tiene fichas con un cero de un lado, y un uno del otro. Tenemos 6 fichas azules (las seis iguales), una roja y una verde. ¿De cuántas formas podemos hacer una fila con las ocho fichas si no debe haber dos fichas seguidas con cero juntos, pero sí puede haber dos unos seguidos, un cero seguido de un uno y un uno seguido de un cero?

Problema

Juego de cartas con puntos de ataque

Enviado por jesus el 28 de Mayo de 2016 - 19:36.

En un juego de cartas, cada una tiene un puntaje en defensa y ataque que cumple:

  • Los puntajes son un número entero mayor que 0.
  • Su puntaje en defensa es mayor al ataque.
  • No hay dos cartas con el mismo ataque y la misma defensa.

Una carta A le gana a otra carta B si el ataque de A es mayor a la defensa de B. El poder de la carta es la cantidad de cartas a las que le gana. Tengo una carta cuya suma de puntajes de defensa y ataque es 50, ¿cuál es el máximo poder que podría tener esa carta?

Problema

Diez monedas, dos preguntas

Enviado por jmd el 11 de Enero de 2012 - 20:30.

Se tienen diez monedas indistinguibles en hilera. Se sabe que dos de ellas son falsas y están en posiciones consecutivas en la hilera. Una pregunta consiste en elegir un subconjunto cualquiera de las monedas y preguntar cuántas de ellas son falsas.  Decidir si es posible identificar con certeza las monedas falsas haciendo solamente dos preguntas, sin conocer la respuesta de la primera antes de formular la segunda.

Problema

ayuda con este problema

Enviado por scorpions_109 el 18 de Noviembre de 2011 - 17:26.

 Felipe depositó $ 1.800.000 en un banco a una tasa de interés del 1,3% mensual. Al cabo de tres años, ¿cuál es la cantidad de dinero que tiene depositada Felipe?

Problema

Cuadrícula n por 4 (P4)

Enviado por jesus el 4 de Diciembre de 2010 - 17:32.

 Sea $n$ un entero positivo. En una cuadrícula $ n\times 4 $, cada renglón es igual a

2 0 1 0

Un cambio es tomar tres casillas

  1. consecutivas en el mismo renglón y
  2. con dígitos distintos escritos en ellas

y cambiar los tres dígitos de estas casillas de la siguiente manera

0 → 1,         1 → 2,        2→0

Problema

Problema 5, IMO 2010

Enviado por jesus el 18 de Julio de 2010 - 21:58.

En cada una de las seis cajas $B_1,B_2,B_3,B_4,B_5,B_6$ hay inicialmente sólo una moneda. Se permiten dos tipos de operaciones:

  • Tipo 1: Elegir una caja no vacía $B_j$ , con $1 \leq j \leq 5$. Retirar una moneda de $B_j$ y añadir dos monedas a $B_{j+1}$.
  • Tipo 2: Elegir una caja no vacía $B_k$, con $1 \leq k \leq 4$. Retirar una moneda de $B_k$ e intercambiar los contenidos de las cajas (posiblemente vacías) $B_{k+1}$ y $B_{k+2}$.

Determine si existe una sucesión finita de estas operaciones que deja a las cajas $B_1,B_2,B_3,B_4,B_5$ vacías y a la caja $B_6$ con exactamente $2010^{2010^{2010}}$ monedas. (Observe que $a^{b^c} = a^{(b^c)}$.)

Problema

P6 OMM 2001. Cuatro axiomas para colección de monedas

Enviado por jmd el 13 de Julio de 2010 - 23:08.

Un coleccionista de monedas raras tiene monedas de denominaciones $1, 2, 3, \ldots, n$ (tiene muchas monedas de cada denominación). Desea poner algunas de sus monedas en las cajas de manera que se cumplan las siguientes condiciones: