Problemas - Combinatoria
P4. Las hormigas troll de Lalo
A Lalo le regalaron una red mágica, como la que se muestra en la figura. La red consta de 20 vértices unidos por algunas aristas. Lalo coloca, de una en una, hormigas en los vértices de la red. Las hormigas caminan sobre las aristas, y al hacerlo, la arista recorrida va desapareciendo. Lalo tiene $n$ hormigas y juega colocándolas de la siguiente manera:
P3. Los caminos ascendentes completos
Sea $n$ un entero positivo. Considera un tablero de $2 \times n$ dividido en cuadrados de $1 \times 1$. Cada cuadrado del tablero se etiqueta con un número distinto elegido de entre el $1$ al $2n$ elegido exactamente una vez.
Cudarícula de lados $(2^n - 1)$ y $(2^n + 1)$ (P5)
Una cuadrícula con lados de longitudes $(2^n - 1)$ y $(2^n + 1)$ se quiere dividir en rectángulos ajenos con lados sobre líneas de la cuadrícula y con un número de cuadraditos de $1 \times 1$ dentro del rectángulo igual a una potencia de $2$.
Encuentra la menor cantidad de rectángulos en los que se puede dividir la cuadrícula.
Nota: El $1$ es considerado una potencia de $2$ pues $2^0 = 1$.
P4. La vaca saturno saturnita y su polígono de focos
P2. Sam vs Hugo, monedas en fila
Sam y Hugo juegan con $n$ monedas, todas con $A$ en una cara y $S$ en la otra. Las monedas están puestas en fila sobre la mesa. Sam y Hugo se turnan. En su turno, Sam puede voltear una o más monedas, siempre que no voltee dos adyacentes; mientras Hugo elige exactamente dos monedas adyacentes y las voltea. Al comenzar el juego, todas las monedas muestran $A$. Sam juega primero y gana si todas las monedas muestran $S$ simultáneamente en cualquier momento. Halla todos los $n\geq 1$ con los que Hugo puede evitar que Sam gane.
4. Un cuadrado mágico perfecto
Los números del 1 al 360 se reparten en 9 subconjuntos, de tal forma que la suma de cada subconjunto se coloca en un cuadrado de $3 \times 3$. ¿Será posible que el cuadrado de $3 \times 3$ sea un cuadrado mágico?
P1. Aparición épica de Deker en la OMM Tamaulipas
Sea $n$ un entero positivo y sea $s(n)$ la suma de sus dígitos. Decimos que $n$ es $deker$ si $2s(n)=s(2n)$. Demuestra que existen más de 2025 números $deker$ de 5 dígitos.
P5. Revive la Geocombi en un 15-ágono regular
En un círculo, se dibuja una 15-ágono regular y se forman triángulos arbitrarios conectando 3 de sus vértices. ¿Cuántos triángulos no congruentes se pueden dibujar?
P3. Coloreando la recta numérica
Cada número entero de la recta numérica se pinta de rojo o azul según las siguientes reglas:
- El número $1$ es rojo.
- Si $a$ y $b$ son dos números rojos, no necesariamente diferentes, entonces los números $a-b$ y $a + b$ tienen colores diferentes.
Determina el color del número $2025$.
P6. Matilda colocando fichas en la cuadrícula
Considere una cuadrícula de $2025 \times 2025$ cuadrados unitarios. Matilda desea colocar en la cuadrícula algunas fichas rectangulares, posiblemente de diferentes tamaños, de modo que cada lado de cada ficha se encuentre sobre una línea de la cuadrícula y cada cuadrado unitario esté cubierto como máximo por una ficha.
Determine el mínimo número de fichas que Matilda debe colocar para que cada fila y cada columna de la cuadrícula tenga exactamente un cuadrado unitario que no esté cubierto por ninguna ficha.
