Problemas - Álgebra
Problema 5 - IMO 2022 - Redacción corta pero peligrosa
Hallar todas las ternas (a,b,p) de números enteros positivos con p primo que satisfacen
ap = b! + p
Los favoritos de Claudia
Claudia escribe una lista de sus 11 números favoritos más pequeños. El primero es el 5 y el tercero es 13, además, se dió cuenta que todos los números excepto el primero y el último resultan ser el promedio de los dos números que tiene a lado. ¿Cuál es el último número de su lista?
Fichas de dominó
Pancho hizo una hilera con 7 fichas de dominó de manera que los lados con el mismo número de puntos quedaron uno al lado del otro. Originalmente la hilera tenía un total de 33 puntos, pero el hermanito de Pancho se llevó dos de las fichas. ¿Qué cantidad de puntos había en el lugar que señala la flecha en la figura?

Misma área y lados en progresión arimética (OMM 2021 P1)
Problema 1 - IMO 2019 - Determinar todas las función enteras.
Sea $\mathbb{Z}$ el conjunto de los números enteros. Determinar todas las funciones $f: \mathbb{Z} \to \mathbb{Z}$ tales que, para todos los enteros $a$ y $b$, $$f(2a) + 2f(b) = f (f (a + b)).$$
Desigualdades con parte entera
Encuentra el menor número real $x$ que cumpla todas las siguientes desigualdades:
$$ \lfloor x \rfloor < \lfloor x^2 \rfloor < \lfloor x^3 \rfloor < \dots < \lfloor x^n \rfloor < \lfloor x^{n+1} \rfloor < \dots $$
Nota: $\lfloor x \rfloor$ es el mayor entero menor o igual a $x$, es decir, es el único número entero que cumple que $ \lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$.
Tercia de reales
Encuentra todas las ternas de reales $(a,b,c)$ tales que $$ a- \frac{1}{b} = b - \frac{1}{c} = c - \frac{1}{a}$$
encontrar ecuacion
hallar dos numeros pares consecutivos de tal forma que 1/5 del primero,mas 7/11 del segundo,menos 8,sea igual a 1/2 del segundo menos 1
Álgebra del Primer Selectivo 2016
Encuentra todas las parejas de enteros positivos $m$ y $n$ tales que $$(m^2+n)(m+n^2)=(m+n)^3.$$
Problema 6 - IMO 2016 - Malfalda silba y las ranas saltan
Se tienen $n \geq 2$ segmentos en el plano tales que cada par de segmentos se intersecan en un punto interior a ambos, y no hay tres segmentos que tengan un punto en común. Mafalda debe elegir uno de los extremos de cada segmento y colocar sobre él una rana mirando hacia el otro extremo. Luego silbará $n -1$ veces. En cada silbido, cada rana saltará inmediatamente hacia adelante hasta el siguiente punto de intersección sobre su segmento. Las ranas nunca cambian las direcciones de sus saltos. Mafalda quiere colocar las ranas de tal forma que nunca dos de ellas ocupen al mismo tiempo el mismo punto de intersección.