Problemas - Álgebra
Uno igual al del 2011 (P2)
Un sistema de ecuaciones (P3)
Sea $n \ge 3$ un entero positivo. Encuentra todas las soluciones $(a_1, a_2, \ldots, a_n)$ de números reales que satisfacen el siguiente sistema de $n$ ecuaciones:
\[ \begin{aligned} a_1^2 + a_1 - 1 &= a_2, \\ a_2^2 + a_2 - 1 &= a_3, \\ &\ \vdots \\ a_{n-1}^2 + a_{n-1} - 1 &= a_n, \\ a_n^2 + a_n - 1 &= a_1. \end{aligned} \]P6. Más de Desigualdades Tamaulipas
P1. El regreso del piso, el ascenso del techo
3. Una desigualdad, muchas soluciones.
(CIIM P5, 2013) Matrices y conjugación
P6. Desigualdades Tamaulipas para un número real
Sean $a$ y $b$ enteros positivos y $c$ un número real positivo tal que $$\frac{a+1}{b+c}=\frac{b}{a}$$
Demuestra que $c \geq 1$.
P4. Divisores propios en una sucesión infinita
Un divisor propio de un entero positivo $N$ es un divisor positivo de $N$ distinto de $N$.
La sucesión infinita $a_1, \ a_2, \dots$ está formada por enteros positivos, cada uno con al menos 3 divisores propios. Para cada $n \geq 1$ el entero $a_{n+1}$ es la suma de los tres mayores divisores propios de $a_n$.
Determina todos los valores posibles de $a_1$.
P3. Funciones Bonza
Sea $\mathbb{N}$ el conjunto de los enteros positivos. Una función $f: \mathbb{N} \rightarrow \mathbb{N}$ se llama $genial$ si
$$f(a) | b^a-f(b)^{f(a)}$$
Para todos los enteros positivos $a, b$.
Determine la menor constante real $c$ tal que $f(n) \leq cn$, para todas las funciones $geniales \ f$ y todos los enteros positivos $n$.
P7. Contando el producto ij.
Sea $n$ un entero positivo. Se numeran los renglones y las columnas de una cuadrícula de $n \times n$ del 1 al $n$. Dentro de cada cuadrito se escribe un entero no-negativo de manera que el entero escrito en el cuadrito del renglón $i$ y la columna $j$ es igual a la cantidad de cuadritos que tienen escrito el producto $i \cdot j$. Determina de cuántas maneras se puede hacer esto.
