Problemas - Álgebra

Problema

Problema 5 - IMO 2022 - Redacción corta pero peligrosa

Enviado por Samuel Elias el 14 de Julio de 2022 - 20:38.

Hallar todas las ternas (a,b,p) de números enteros positivos con p primo que satisfacen

ap = b! + p

Problema

Los favoritos de Claudia

Enviado por Samuel Elias el 10 de Julio de 2022 - 21:19.

Claudia escribe una lista de sus 11 números favoritos más pequeños. El primero es el 5 y el tercero es 13, además, se dió cuenta que todos los números excepto el primero y el último resultan ser el promedio de los dos números que tiene a lado. ¿Cuál es el último número de su lista?

Problema

Fichas de dominó

Enviado por Samuel Elias el 9 de Julio de 2022 - 13:23.

Pancho hizo una hilera con 7 fichas de dominó de manera que los lados con el mismo número de puntos quedaron uno al lado del otro. Originalmente la hilera tenía un total de 33 puntos, pero el hermanito de Pancho se llevó dos de las fichas. ¿Qué cantidad de puntos había en el lugar que señala la flecha en la figura?


Problema

Misma área y lados en progresión arimética (OMM 2021 P1)

Enviado por German Puga el 12 de Noviembre de 2021 - 03:06.
Los números positivos y distintos $a_1, a_2, a_3$ son términos en una progresión aritmética, y de la misma manera los números positivos y distintos $b_1, b_2, b_3$ son términos de una progresión aritmética. ¿Es posible usar tres segmentos de longitudes $a_1, a_2, a_3$ como bases y otros tres segmentos con longitudes $b_1, b_2, b_3$ como alturas (en algún orden), para construir rectángulos de la misma área?
Problema

Problema 1 - IMO 2019 - Determinar todas las función enteras.

Enviado por jesus el 19 de Junio de 2020 - 18:41.

Sea $\mathbb{Z}$ el conjunto de los números enteros. Determinar todas las funciones $f: \mathbb{Z} \to \mathbb{Z}$ tales que, para todos los enteros $a$ y $b$, $$f(2a) + 2f(b) = f (f (a + b)).$$

Problema

Desigualdades con parte entera

Enviado por German Puga el 11 de Diciembre de 2016 - 22:22.

Encuentra el menor número real $x$ que cumpla todas las siguientes desigualdades: 

$$ \lfloor x \rfloor < \lfloor x^2 \rfloor <  \lfloor x^3 \rfloor < \dots < \lfloor x^n \rfloor < \lfloor x^{n+1} \rfloor < \dots $$

Nota: $\lfloor x \rfloor$ es el mayor entero menor o igual a $x$, es decir, es el único número entero que cumple que $ \lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$. 

Problema

Tercia de reales

Enviado por German Puga el 29 de Octubre de 2016 - 14:19.

Encuentra todas las ternas de reales $(a,b,c)$ tales que $$ a- \frac{1}{b} = b - \frac{1}{c} = c - \frac{1}{a}$$

Problema

encontrar ecuacion

Enviado por guillermo el 3 de Octubre de 2016 - 15:24.

hallar dos numeros pares consecutivos de tal forma que 1/5 del primero,mas 7/11 del segundo,menos 8,sea igual a 1/2 del segundo menos 1

Problema

Álgebra del Primer Selectivo 2016

Enviado por Orlandocho el 28 de Agosto de 2016 - 13:49.

Encuentra todas las parejas de enteros positivos $m$ y $n$ tales que $$(m^2+n)(m+n^2)=(m+n)^3.$$

Problema

Problema 6 - IMO 2016 - Malfalda silba y las ranas saltan

Enviado por jesus el 12 de Julio de 2016 - 22:57.

Se tienen $n \geq 2$ segmentos en el plano tales que cada par de segmentos se intersecan en un punto interior a ambos, y no hay tres segmentos que tengan un punto en común. Mafalda debe elegir uno de los extremos de cada segmento y colocar sobre él una rana mirando hacia el otro extremo. Luego silbará $n -1$ veces. En cada silbido, cada rana saltará inmediatamente hacia adelante hasta el siguiente punto de intersección sobre su segmento. Las ranas nunca cambian las direcciones de sus saltos. Mafalda quiere colocar las ranas de tal forma que nunca dos de ellas ocupen al mismo tiempo el mismo punto de intersección.