Problemas - Geometría
P5. Sobreexplotando la configuración del ortocentro con una concurrencia.
Sea $ABC$ un triángulo acutángulo y $H$ su ortocentro. Sea $\Omega$ el circunírculo de $BHC$. Las rectas $AH$ y $AC$ cortan a $\Omega$ en $D \neq H$ y $E\neq C$ respectivamente. Sea $F \neq D$ la segunda intersección de $CD$ con el circuncírculo de $AED$. Demuestra que $AF, \ BC$ y $DE$ concurren.
P3. Paralelas con una tangente
Sea $ABC$ un triángulo acutángulo, $H$ su ortocentro y $D$ el pie de altura desde $A$ a $BC$, de tal forma que $AH=HD$. Sea $\mathcal{Z}$ el circuncírculo de $BHC$. Sea $\ell$ la recta tangente a $\mathcal{Z}$ por $H$, de tal forma que $\ell$ corta a $AB$ en $S$ y a $AC$ en $T$. Sean $M$ y $N$ los puntos medios de $BH$ y $CH$ respectivamente. Demuestra que $SM$ es paralela a $TN$.
6. Aplicación del EFR
2. Perpendicular a un lado con dos circunferencias.
Sea $ABC$ un triángulo acutángulo con $AB < AC$ y $\Gamma$ el círculo que pasa por los 3 vértices de $ABC$. Sea $\omega$ la circunferencia de radio $AB$ con centro $A$. $\omega$ corta a $\Gamma$ en $F \neq B$. Sea $G$ la segunda intersección de $CF$ con $\omega$ tal que $G \neq F$. Demuestra que $AC$ es perpendicular a $BG$.
P1. 24 sí y solo sí 48
Sea $ABC$ un triángulo con $AB<AC$. Sea $D$ un punto sobre el segmento $AC$ tal que $AD = AB$. Demuestra que $\angle DBC=24^{\circ}$ sí y sólo sí $\angle ABC - \angle ACB = 48^{\circ}$.
P2. Paralela tangente a un circuncírculo
Sea $\Omega$ y $\Gamma$ circunferencias de centros $M$ y $N$ respectivamente tales que el radio de $\Omega$ es menor al radio de $\Gamma$. Supongamos que las circunferencias $\Omega$ y $\Gamma$ se cortan en dos puntos distintos $A$ y $B$. La recta $MN$ corta a $\Omega$ en $C$ y a $\Gamma$ en $D$, de forma que los puntos $C, \ M,\ N, \ D$ están en esa recta en ese orden. Sea $P$ el circuncentro del triángulo $ACD$. La recta $AP$ corta de nuevo a $\Omega$ en $E \neq A$. La recta $AP$ corta de nuevo a $\Gamma$ en $F \neq A$. Sea $H$ el ortocentro del triángulo $PMN$.
Demuestre que la recta paralela a $AP$ que pasa por $H$ es tangente al circuncírculo del triángulo $BEF$.
P6. Razones entre cíclicos dobles y pies de perpendicular.
Sea $ABCD$ un cuadrilatero cíclico y $E$ el punto de intersección de sus diagonales. La circunferencia que pasa por los vértices del triángulo $BEC$ corta a la recta $AB$ en $F$ y a la recta $CD$ en $G$. Sea $P$ el pie de la perpendicular desde $A$ sobre la recta $BC$ y sea $Q$ el pie de la perpendicular desde $B$ sobre la recta $AD$. Demuestra que:
$$\frac{AF}{DG}=\frac{AP}{BQ}$$
P3. Ortocentros obtusángulos y colinealidad
Sea $ABC$ un triángulo escaleno con $\angle BAC = 90^{\circ}$, y sea $M$ el punto medio de $BC$. La recta perpendicular a $AM$ por $M$ intersecta a las rectas $AB$ y $AC$ en $P$ y $Q$ respectivamente. Sean $H_1, H_2$ los ortocentros de los triángulos $CMP$ y $BMQ$ respectivamente. Demuestra que $H_1H_2$ pasa por $A$.
NOTA: el ortocentro es la intersección de las tres alturas.
P3. DANI el ciclico
Sea $ABC$ un triángulo con $\angle CAB =90 ^ {\circ}$ e incentro $I$. Las bisectrices de $\angle C$ y $\angle B$ intersecan a $AB$ y $AC$ en $E$ y $F$ respectivamente, e intersecan a la perpendicular de $BC$ por $A$ en los puntos $P$ y $Q$ respectivamente. Sean $D$ y $N$ los puntos medios de $PE$ y $QF$ respectivamente.
- Demuestra que los puntos $D, \ A, \ N, \ I$ están sobre una circunferencia.
- Demuestra que $DN$ es paralela a $BC$
P4. Cuarta concurrencia en un ortocentro
Sea $ABC$ un triángulo acutángulo con ortocentro $H$ y sea $M$ un punto del segmento $BC$. La recta por $M$ y perpendicular a $BC$ corta a las rectas $BH$ y $CH$ en los puntos $P$ y $Q$, respectivamente. Muestra que la recta $AM$ pasa por el ortocentro del triángulo $HPQ$.
