Problemas - Geometría
P5. Calcula el área del cudrilátero DHEO
Se tiene el triángulo acutángulo $ABC$. El segmento $BC$ mide 40 unidades. Sea $H$ el ortocentro del triángulo $ABC$ y $O$ su circuncentro. Sean $D$ el pie de la altura desde $A$ y $E$ el pie de la altura desde $B$. Además el punto $D$ parte al segmento $BC$ de manera que $\frac{BD}{DC} = \frac{3}{5}$. Si la mediatriz del segmento $AC$ pasa por el punto $D$, calcula el área del cuadrilátero $DHEO$.
Nota: El ortocentro es el punto donde se intersectan las tres alturas de un triángulo. El circuncentro es el centro del círculo que pasa por los tres vértices del triángulo.
P3. Triángulo, Altura y punto en Mediatriz.
Sea $ABC$ un triángulo y $D$ el pie de la altura desde $A$. Sea $M$ un punto tal que $MB = MC$. Sean $E$ y $F$ las intersecciones del circuncírculo de $BMD$ y $CMD$ con $AD$. Sean $G$ y $H$ las intersecciones de $MB$ y $MC$ con $AD$. Demuestra que $EG = FH$
P5 Concurrencia de 2 círculos y 1 segmento
Sean $ABC$ un triángulo acutángulo, $\Gamma$ su circuncírculo y $O$ su circuncentro. Sea $F$ el punto en $AC$ tal que $\angle COF = \angle ACB$, donde $F$ y $B$ están de lados opuestos respecto a $CO$. La recta $FO$ corta a $BC$ en $G$. La paralela a $BC$ por $A$ interseca a $\Gamma$ de nuevo en $M$. Las rectas $MG$ y $CO$ se cortan en $K$. Demuestra que los circuncírculos de los triángulos $BGK$ y $AOK$ concurren en $AB$.
P3 Regresa la Geo a la OMM
Sea $ABCD$ un cuadrilátero convexo. Si $M, N, K$ son los puntos medios de los segmentos $AB$, $BC$ y $CD$ respectivamente, y además existe un punto $P$ dentro del cuadrilátero $ABCD$ tal que, $\angle BPN = \angle PAD$ y $\angle CPN = \angle PDA$. Demuestra que $AB \cdot CD$ = $4PM \cdot PK$
3.- Ortocentro como Punto Medio
Sean $ABC$ un triángulo acutángulo, $H$ su ortocentro y $M$ el punto medio de $BC$. La perpendicular a $MH$ por $H$ corta a $AB$ en $L$ y a $AC$ en $N$. Demuestra que $LH=HN$.
NOTA: El ortocentro es la intersección de las alturas del triáungulo.
Un triángulo acutángulo es aquel que tiene sus 3 ángulos agudos.
6.- 480°???
Sea $ABC$ un triángulo equilátero. Sean $A_1$, $B_1$ y $C_1$ puntos interiores de $ABC$ tales que $BA_1$ = $A_1C$, $CB_1$ = $B_1A$, $AC_1$ = $C_1B$ y <$BA_1C$ + <$CB_1A$ + <$AC_1B$ = 480°.
Las rectas $BC_1$ y $CB_1$ se cortan en $A_2$, las rectas $CA_1$ y $AC_1$ se cortan en $B_2$, y las rectas $AB_1$ y $BA_1$ se cortan en $C_2$.
Demuestra que si el triángulo $A_1B_1C_1$ es escaleno, entonces los tres circuncírculos de los triángulos $AA_1A_2$, $BB_1B_2$ y $CC_1C_2$ pasan todos por dos puntos comunes.
NOTA: un triángulo escaleno tiene sus 3 longitudes de lados distintos.
2.- Revive la geo con una concurrencia
Sea $ABC$ un triángulo acutángulo con $AB < AC$. Sea Ω el circuncírculo de ABC. Sea S el punto medio del arco $CB$ de Ω que contiene a A. La perpendicular por $A$ por $BC$ corta al segmento $BS$ en $D$ y a Ω de nuevo en E ≠ A. La paralela a $BC$ por $D$ corta a la recta $BE$ en $L$. Sea ω el circuncírculo del triángulo $BDL$. Las circunferencias ω y Ω se cortan de nuevo en P ≠ B. Demuestra que la recta tangente a ω en P corta a la recta BS en un punto de la bisectriz interior del ángulo <$BAC$.
P8. Hexágonos de palitos con áreas iguales
Se tienen nueve palitos de madera: tres azules de longitud $a$ cada uno, tres rojos de longitud $r$ cada uno y tres verdes de longitud $v$ cada uno, tales que es posible formar un triángulo $T$ con palitos de colores distintos.
Dana puede formar dos arreglos, comenzando con $T$ y utilizando los otros seis palitos para prolongar los lados de $T$, como se muestra en la figura. De esta manera se pueden formar dos hexágonos cuyos vértices son los extremos de dichos seis palitos. Demuestra que ambos hexágonos tienen la misma área.
P2. Matilda dibuja cuadriláteros
Matilda dibuja 12 cuadriláteros. El primer cuadrilátero que dibuja es un rectángulo de lados enteros y 7 veces más ancho que alto. Cada vez que termina de dibujar un cuadrilátero, une los puntos medios de cada pareja de lados consecutivos con segmentos de recta para así obtener el siguiente cuadrilátero. Se sabe que el último cuadrilátero que dibuja Matilda es el primero en tener área menor a 1. ¿Cuál es el área máxima posible del primer cuadrilátero?
6.- Punto ideal de semejanza
Encuentra todos los $n \geq 3$, tales que existe un polígon convexo de $n$ lados $A_1A_2 \dots A_n$, que tenga las siguientes características:
- todos los ángulos internos de $A_1A_2 \dots A_n$ son iguales
- no todos los lados de $A_1A_2 \dots A_n$ son iguales
- existe un triángulo $T$ y un punto $O$ en el interior de $A_1A_2 \dots A_n$ tal que los $n$ triángulos $OA_1A_2$, $OA_2A_3$, $\dots$, $OA_{n-1}A_n$ son todos semejantes a $T$
NOTAS: