Avanzado
P6 OMM 1999. Cubrimiento con fichas de dominó
Se dice que un polígono es ortogonal si todos sus lados tienen longitudes enteras y cada dos lados consecutivos son perpendiculares. Demuestre que si un polígono ortogonal puede cubrirse con rectángulos de $2 \times1$ (sin que éstos se traslapen) entonces al menos uno de sus lados tiene longitud par.
P4 OMM 1999. Diez cuadros marcados en tablero de ajedrez
En una cuadrícula de $8\times8$ se han escogido arbitrariamente 10 cuadritos y se han marcado sus centros. El lado de cada cuadrito mide 1. Demuestre que existen al menos dos puntos marcados que están separados una distancia menor o igual que $\sqrt{2}$, o que existe al menos un punto marcado que se encuentra a una distancia $1/2$ de una orilla de la cuadrícula.
P3 OMM 1999. Hexágono en triángulo: razón de áreas y concurrencia
Considere un punto $P$ en el interior del triángulo $ABC$. Sean $D, E$ y
$F$ los puntos medios de $AP, BP$ y $CP$ respectivamente y $L, M$ y $N$ los
puntos de intersección de $BF$ con $CE$, $AF$ con $CD$ y $AE$ con $BD$.
- Muestre que el área del hexágono $DNELFM$ es igual a una tercera parte del área del triángulo $ABC$.
- Muestre que $DL, EM$ y $FN$ concurren.
P6 OMM 1998. Planos equidistantes a 5 puntos
Un plano en el espacio es equidistante a un conjunto de puntos si la distancia de cada punto al plano es la misma. ¿Cuál es el mayor número de planos equidistantes a 5 puntos de los cuales no hay 4 en un mismo plano?
P3 OMM 1998. Octágono rojinegro
Cada uno de los lados y las diagonales de un octágono regular se pintan de rojo o de negro. Demuestre que hay al menos siete triángulos cuyos vértices son vértices del octágono y sus tres lados son del mismo color.
P2 OMM 1998. Rayos, ángulo, bisectriz, lugar geométrico...
Dos rayos $l,m$ parten de un mismo punto formando un ángulo $A$, y $P$ es un punto en $l$. Para cada circunferencia $C$, tangente a $l$ en $P$, que corte a $m$ en puntos $Q$ y $R$, $T$ es el punto donde la bisectriz del ángulo $QPR$ corta a $C$. Describe la figura geométrica que forman los puntos $T$. Justifica tu respuesta.
P6 OMM 1997. Un quinto más suma de fracciones
Pruebe que el número 1 se puede escribir de una infinidad de maneras distintas en la forma $$1 = \frac{1}{5} + \frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}$$ donde $ n $ y $a_1, a_2, \ldots , a_n$ son enteros positivos y $5 <a_1< a_2 <\ldots <a_n$
P5 OMM 1997. Triángulo formado por cevianas
Sean $P, Q, R$ puntos sobre los lados de un triángulo $ABC$ con $P$ en el segmento $BC$, $Q$ en el segmento $AC$ y $R$ en el segmento $BA$, de tal manera que si $A'$ es la intersección de $BQ$ con $CR$, $B'$ es la intersección de $AP$ con $CR$, y $C'$ es la intersección de $AP$ con $BQ$, entonces $AB' = B'C',BC' = C'A'$, y $CA' = A'B'$. Calcule el cociente del área del triángulo $PQR$ entre el área del triángulo $ABC$.
P4 OMM 1997. Planos determinados por seis puntos
Dados 3 puntos no alineados en el espacio, al único plano que los contiene le llamamos plano determinado por los puntos. ¿Cuál es el mínimo número de planos determinados por 6 puntos en el espacio si no hay 3 alineados y no están los 6 en un mismo plano?
P3 OMM 1997. Dieciseis vecinos en una cuadrícula
En una cuadrícula de 4 × 4 se van a colocar los números enteros del 1 al
16 (uno en cada casilla).
- (a) Pruebe que es posible colocarlos de manera que los números que aparecen en cuadros que comparten un lado tengan una diferencia menor o igual a 4.
- (b) Pruebe que no es posible colocarlos de tal manera que los números que aparecen en cuadros que comparten un lado tengan diferencia menor o igual a 3.
