Básico

Problemas de nivel pre-estatal.
Problema

Medida de segmento para área 2016

Enviado por German Puga el 3 de Junio de 2016 - 18:37.
$ABCD$ es un cuadrado de área 7056. $E$ es un punto sobre el lado $CD$ y $F$ es el punto medio de $AE$. ¿Cuánto debería medir el segmento $EC$ para que el área del cuadrilátero $FECB$ sea 2016?
 
Problema

El capicúa más cercano

Enviado por German Puga el 3 de Junio de 2016 - 18:16.

Una sucesión de números mayores que 0 comienza  con cualquier número y el siguiente será la resta entre el número anterior  y el número capicúa más cercano que sea menor o igual al número. Por ejemplo $$ 2016 \rightarrow 14 \rightarrow 3 \rightarrow 0$$ Se observa que 14=2016 - 2002 ;  3 = 14 - 11 y  0 = 3 - 3. La sucesión termina cuando se llega a cero, en el ejemplo la sucesión tuvo cuatro términos ¿Cuál es el número más pequeño con el que puede iniciar la sucesión para que tenga exactamente 5 términos?

Problema

Elección de gatos de colores

Enviado por German Puga el 3 de Junio de 2016 - 18:03.

En un barrio hay gatos de colores. Hay 15 rojos, 18 amarillos y 21 azules. En cada grupo de gatos de colores 2/3 son machos. ¿De cuántas maneras puedes tomar dos gatos del mismo color y el mismo sexo?

Problema

Juego de cartas con puntos de ataque

Enviado por jesus el 28 de Mayo de 2016 - 19:36.

En un juego de cartas, cada una tiene un puntaje en defensa y ataque que cumple:

  • Los puntajes son un número entero mayor que 0.
  • Su puntaje en defensa es mayor al ataque.
  • No hay dos cartas con el mismo ataque y la misma defensa.

Una carta A le gana a otra carta B si el ataque de A es mayor a la defensa de B. El poder de la carta es la cantidad de cartas a las que le gana. Tengo una carta cuya suma de puntajes de defensa y ataque es 50, ¿cuál es el máximo poder que podría tener esa carta?

Problema

Caminando en una escalera electríca

Enviado por jesus el 28 de Mayo de 2016 - 19:32.

Una escalera eléctrica tarda 60 segundos en llevar a una persona del primer al segundo piso, la persona caminando tarda 90 segundos en subir esa misma escalera apagada. ¿Cuánto tarda esa persona en subir la escalera caminando y estando prendida?

Problema

La región complemento de dos hexágonos

Enviado por jesus el 28 de Mayo de 2016 - 19:30.

En la siguiente figura tenemos dos hexágonos con sus lados iguales. El paralelogramo tiene área de 2016 u2 , ¿cuál es el área de la región sombreada?

Problema

Capacidad del estadio de futbol

Enviado por jesus el 28 de Mayo de 2016 - 19:27.

Al inicio de un partido de futbol, al estadio estaba al 30% de capacidad, 30 minutos después había 3000 aficionados más que al inicio y al estadio le faltaba un 30% para llenarse, ¿cuál es la capacidad del estadio?

Problema

Coloreado de pentágono

Enviado por jesus el 28 de Mayo de 2016 - 19:25.

Problema 1. En el pizarrón hay dibujado el siguiente pentágono. Paty tiene dos colores distintos, blanco y negro. ¿Cuántos pentágonos distintos podría obtener usando sus colores, teniendo en cuenta que va a pintar todas las regiones y que dos pentágonos son iguales si uno es resultado que girar el otro como los de la figura?

Problema

Uno sencillo de conteo

Enviado por Paola Ramírez el 7 de Mayo de 2016 - 03:44.

En la siguiente puntícula de $11\times11$ se van a formar triángulos isósceles de  tal manera que su lado desigual esté sobre las líneas rosas. ¿Cuántos triángulos isoósceles se pueden formar?

 

Problema

Escalinata

Enviado por Paola Ramírez el 7 de Mayo de 2016 - 03:02.

Sea $\triangle ABC$ un trinagulo isósceles con $AC=CB, AB=7$ y altura $CD=9$. Los segmentos $a,b,c,d,e,f,g,h$ e $i$ son paralelos a $AB$ y dividen a $CD$ en $9$ segmentos iguales.

Encuentra $a+b+c+d+e+f+i$

Distribuir contenido