Intermedio

Problemas de nivel estatal y similares.
Problema

Cuadrados perfectos en una progresión aritmética

Enviado por jmd el 20 de Diciembre de 2011 - 21:16.

Demostrar que si entre los infinitos términos de una progresión aritmética de números enteros positivos hay un cuadrado perfecto, entonces infinitos términos de la progresión son cuadrados perfectos.

Problema

Múltiplos de un primo escritos con puros unos

Enviado por jmd el 19 de Diciembre de 2011 - 21:33.

 Demostrar que para todo número primo $p$ distinto de 2 y de 5, existen infinitos múltiplos de $p$ de la forma 1111...1 (escrito sólo con unos).

Problema

Desigualdad con inradio y circunradio

Enviado por jmd el 19 de Diciembre de 2011 - 21:32.

Justificar razonadamente que, en cualquier triángulo, el diámetro de la circunferencia inscrita no es mayor que el radio de la circunferencia circunscrita.

Problema

Pichoneras de nacionalidad, edad y sexo

Enviado por jmd el 19 de Diciembre de 2011 - 21:27.

En una reunión hay 201 personas de 5 nacionalidades diferentes. Se sabe que, en cada grupo de 6, al menos dos tienen la misma edad. Demostrar que hay al menos 5 personas del mismo país, de la misma edad y del mismo sexo.

Problema

Para entender la pregunta primero tienes que responderla

Enviado por jmd el 10 de Diciembre de 2011 - 15:27.

Determine los posibles valores de la suma de los digitos de todos los cuadrados perfectos.

Problema

Ejercicio trigonométrico

Enviado por jmd el 10 de Diciembre de 2011 - 10:40.

Sea $ABC$ un triángulo equilátero y $\Gamma$ su círculo inscrito. Si $D$ y $E$ son puntos de los lados $AB$ y $AC$, respectivamente, tales que $DE$ es tangente a $\Gamma$, demuestre que $$\frac{AD}{DB}+\frac{AE}{EC}=1$$

Problema

¿Cómo se encierra un n-polígono en un paralelogramo?

Enviado por jmd el 10 de Diciembre de 2011 - 10:30.

 Muestre que, para cualquier polígono convexo de área uno, existe un paralelogramo de área 2 que lo contiene.

Problema

Primos que son diferencia de capicúas consecutivos

Enviado por jmd el 10 de Diciembre de 2011 - 10:28.

Un número natural es capicúa si al escribirlo en notación decimal se puede leer de igual forma de izquierda a derecha y de derecha a izquierda. Ejemplos: 8, 23432, 6446. Sean $x_1 < x_2 < \ldots < x_i < x_{i+1} < ... $ todos los números capicúas. Para cada $i$ sea $y_i=x_{i+1} - x_i$. ¿Cuántos números primos distintos tiene el conjunto $\{y_1, y_2, y_3 \ldots \}$?

Problema

¿Sabes geometría analítica? (alternativa: Stewart)

Enviado por jmd el 10 de Diciembre de 2011 - 08:22.

 En un triángulo equilátero $ABC$, cuyo lado tiene longitud 2, se inscribe la circunferencia $\Gamma$.

  • a) Demostrar que para todo punto $P$ de $\Gamma$, la suma de los cuadrados de sus distancias a los vértices $A, B$ y $C$ es 5.
  • b) Demostrar que para todo punto $P$ de $\Gamma$, es posible construir un triángulo cuyos lados tienen las longitudes de los segmentos $AP, BP$ y $CP$, y cuya área es $\sqrt{3}/4$
Problema

Criterio de potencia para cíclico

Enviado por jmd el 9 de Diciembre de 2011 - 18:57.

En un triángulo $ABC$, sean $I$ el centro de la circunferencia inscrita y $D, E$ y $F$ sus puntos de tangencia con los lados $BC, AC$ y $AB$, respectivamente. Sea $P$ el otro punto de intersección de la recta $AD$ con la circunferencia inscrita. Si $M$ es el punto medio de $EF$, demostrar que los cuatro puntos $P, I, M$ y $D$ pertenecen a una misma circunferencia.

Distribuir contenido