Álgebra
Para entender la pregunta primero tienes que responderla
Determine los posibles valores de la suma de los digitos de todos los cuadrados perfectos.
Si le entiendes al enunciado obtienes un punto
Demostrar que todo número natural $n\leq 2^{1000000}$ puede ser obtenido a partir de 1 haciendo menos de 1100000 sumas; más precisamente: que hay una sucesión finita de números naturales $x_0, x_1,\ldots,x_k$, con $k < 1100000$, $x_0 = 1, x_k = n$ tal que para cada $i = 1, 2,\ldots, k$, existen $r, s$ con $0\leq r < i, 0 \leq s < i$, y $x_i = x_r + x_s$.
Eliges, sumas, y te vas...
Sean $n, r$ dos enteros positivos. Se desea construir $r$ subconjuntos $A_1, A_2,\ldots, A_r$ de $\{0, 1,\ldots, n-1\}$ cada uno de ellos con exactamente $k$ elementos y tales que, para cada entero $x$, $0\leq x \leq n-1$, existen $x_1$ en $A_1$, $x_2$ en $A_2$ ,... , $x_r$ en $A_r$ (un elemento en cada conjunto) con $x = x_1 + x_2\dots+ x_r$. Hallar el menor valor posible de $k$ en función de $n$ y $r$.
Una forma complicada de definir una función elemental
Sea $N^* = \{1, 2, 3, \ldots \}$. Halle todas las funciones $f: N^* \mapsto N^*$ tales que:
- i) si $x < y$, entonces $f(x) < f(y)$
- ii) $f(y f(x)) = x^2f(xy)$, para todos los $x, y\in N^*$.
Dos sucesiones recursivas
Sean $(a_n)$ y $(b_n)$ dos sucesiones de números enteros que verifican las siguientes condiciones:
- i) $a_0 = 0, b_0 = 8$
- ii) $a_{n+2} = 2a_{n+1}-a_n+2, b_{n+2}=2b_{n+1}-b_n$
- iii) $a_n^2+b_n^2$ es un cuadrado perfecto para todo $n$.
Determinar al menos dos valores del par $(a_{1992}, b_{1992})$.
Suma de las raíces de un polinomio
Sean dados la colección de $n$ números reales positivos $a_1 < a_2 < a_3 < \ldots < a_n$, y la función$$f(x)=\frac{a_1}{x+a_1}+\frac{a_2}{x+a_2}+\ldots +\frac{a_n}{x+a_n}$$ Determinar la suma de las longitudes de los intervalos, disjuntos dos a dos, formados por todos los valores de $x$ tales que $f(x)\gt 1$.
Suma de una sucesión
Para cada entero positivo $n$, sea $a_n$ el último dígito del número $1+2+3+ ...+n$. Calcular $a_1 + a_2 + a_3 +\ldots+a_{1992}$.
¿Puedes maliciar que es suma de dos cuadrados?
Sea $P(X,Y) = 2X^2 - 6XY + 5Y^2$. Diremos que un número entero $A$ es un valor de $P$ si existen números enteros $B$ y $C$ tales que $A = P(B,C)$.
- i) Determinar cuántos elementos de $\{1, 2, 3, ... ,100\}$ son valores de $P$.
- ii) Probar que el producto de valores de $P$ es un valor de $P$.
Función creciente en [0,1]
Sea $F$ una función creciente definida para todo número real $x$, $0\leq x \leq 1, tal que:
- (a) $F(0) = 0$
- (b) $F(x/3) = F(x)/2$
- (c) $F(1-x) = 1 - F(x)$
Encontrar $F(18/1991)$
Propiedad de un polinomio cúbico
Sea $f(x)$ un polinomio de grado 3 con coeficientes racionales. Probar que si el gráfico de $f$ es tangente al eje $x$, entonces $f(x)$ tiene sus 3 raíces racionales.
