Álgebra

Problema

Bolsas con canicas

Enviado por jmd el 28 de Abril de 2012 - 19:10.

Se tiene cierto número de bolsas acomodadas en una fila. En ellas se meten canicas de la siguiente forma: en la primera bolsa se mete una canica, en la segunda bolsa dos, en la tercera tres y así sucesivamente. Luis escoge una bolsa que tiene catorce canicas menos que la última bolsa de la fila y observa que la suma de todas las canicas de las bolsas que están a la derecha de la que escogió es igual a la suma de las que están a la izquierda. ¿Cuántas canicas tiene la bolsa que Luis escogió?

Problema

EGMO Problema 2 - Máxima cantidad de renglones en una tabla

Enviado por jesus el 25 de Abril de 2012 - 17:41.

Sea $n$ un entero positivo, encuentra el entero más grande $m$, en términos de $n$ con la siguiente propiedad:

Una tabla con m renglones y n columnas puede ser llenada con números reales de tal manera que dos diferentes renglones,  $[a_1, a_2, \dots , a_n]$ and $[b_1, b_2, \ldots, b_n]$ satisfacen que $$\max(|a_1 − b_1|, |a_2 − b_2|,\dots , |a_n − b_n|) = 1.$$

©Traducido de la versión en ingles por Matetam.com

Problema

Desigualdad con multiplicadores en $\{-1,1\}$

Enviado por jmd el 11 de Enero de 2012 - 20:55.

Sean $x_1,x_2,\ldots,x_n$ números reales positivos. Demostrar que existen $a_1,a_2,\ldots,a_n\in\{-1,1\}$ tales que  $$a_1x_1^2+a_2x_2^2+\ldots+a_nx_n^2\geq(a_1x_1+a_2x_2+\ldots+a_nx_n)^2$$

Problema

Ecuación de inversos OIM 2011

Enviado por jmd el 11 de Enero de 2012 - 20:51.

Encontrar todos los enteros positivos $n$ para los cuales existen tres enteros no nulos $x,y,z$ tales que $x+y+z=0$ y $$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{n}$$

Problema

Medias enteras

Enviado por jmd el 11 de Enero de 2012 - 20:43.

Las medias aritmética, geométrica y armónica de dos enteros positivos distintos son todas números enteros. Hallar el menor valor posible de la media aritmética de los dos enteros.

Problema

Sucesión en enteros indecisa

Enviado por jmd el 11 de Enero de 2012 - 20:31.

Decidir si existen enteros positivos $a$ y $b$ tales que todos los términos de la sucesión $(X_n)$, definida como $X_1 =2010, X_2 = 2011$, $$X_{n+2} = X_n + X_{n+1} + a\sqrt{X_nX_{n+1} + b}$$ son números enteros.

Problema

Ecuación sin soluciones enteras

Enviado por jmd el 10 de Enero de 2012 - 16:09.

Pruebe que la ecuación $$x^{2008}+2008!=21^y$$ no tiene soluciones enteras $(x,y)$

Problema

Suma de max-min diferencias

Enviado por jmd el 10 de Enero de 2012 - 16:04.

Considere los números $1,2,3,\ldots,2008^2$ distribuidos en un tablero de $2008\times 2008$, de modo que en cada casilla haya un número distinto. Para cada fila y cada columna del tablero se calcula la diferencia entre el mayor y el menor de sus elementos. Sea $S$ la suma de los 4016 números obtenidos. Determine el mayor valor posible de $S$.

Problema

Sucesión con primer entero en la posición 2007

Enviado por jmd el 10 de Enero de 2012 - 09:23.

Dado un entero positivo $m$, se define la sucesión $\{a_n\}_{n\geq 1}$ de la siguiente manera: $$a_1 = m/2,a_{n+1}=a_n\lceil a_n \rceil $$ Determinar todos los valores de $m$ para los cuales $a_{2007}$ es el primer entero que aparece en la sucesión.
Nota: Para un número real $x$ se define $\lceil x \rceil$ como el menor entero que es mayor o igual a $x$. Por ejemplo, $\lceil \pi \rceil = 4, \lceil 2007 \rceil = 2007$.

Problema

Suma de diferencias

Enviado por jmd el 9 de Enero de 2012 - 23:01.

Se consideran $n$ números reales $a_1,a_2,\ldots,a_n$ no necesariamente distintos. Sea $d$ la diferencia entre el mayor y el menor de ellos y sea $$s= \sum_{i\lt j}|a_i-a_j|$$ Demuestre que $(n-1)d\leq s\leq n^2d/4$ y determine las condiciones que deben cumplir estos $n$ números para que se verifique cada una de las igualdades.

Distribuir contenido