Combinatoria

Problema

Problema 1(IMO 2011)

Enviado por jmd el 19 de Julio de 2011 - 10:21.

Para cualquier conjunto  de cuatro enteros positivos distintos se denota la suma  con 

Problema

Problema 4 (IMO 2011)

Enviado por jmd el 19 de Julio de 2011 - 09:15.

 Sea $n>0$ un entero. Se tiene disponible una balanza y $n$ pesas de pesos $2^0,2^1,2^2,\ldots,2^{n-1}$. Debemos colocar cada una de las pesas en la balanza, una después de otra, de tal manera que el lado derecho nunca sea más pesado que el izquierdo. En cada paso elegimos una de las pesas que aún no ha sido colocada en la balanza, y la colocamos en alguno de los dos lados, hasta que todas las pesas han sido colocadas. Determinar el número de formas en que eso puede hacerse.

Problema

Moscas en un cubo (P1)

Enviado por jesus el 29 de Junio de 2011 - 12:52.

En cada uno de los vértices de un cubo hay una mosca. Al sonar el silbato cada una de las moscas vuela a alguno de los vértices del cubo situado en una misma cara del vértice de donde partió, pero diagonalmente opuesto a éste. Al sonar el silbato ¿de cuántas maneras pueden volar las moscas de modo que en ningún vértice queden dos o más moscas?

Problema

Coloraciones de puntos en una cuadrícula (Problema 3, OIM)

Enviado por jesus el 7 de Abril de 2011 - 09:37.

Sean $n \geq 2$ un número entero y $D_n$ el conjunto de puntos $(x,y)$ del plano cuyas coordenadas son números enteros con $-n \leq x  \leq n $ y $-n \leq y \leq n$

Problema

Cuadrícula n por 4 (P4)

Enviado por jesus el 4 de Diciembre de 2010 - 16:32.

 Sea $n$ un entero positivo. En una cuadrícula $ n\times 4 $, cada renglón es igual a

2 0 1 0

Un cambio es tomar tres casillas

  1. consecutivas en el mismo renglón y
  2. con dígitos distintos escritos en ellas

y cambiar los tres dígitos de estas casillas de la siguiente manera

0 → 1,         1 → 2,        2→0

Problema

Cambios de estado de focos en un tablero (P2)

Enviado por jesus el 28 de Noviembre de 2010 - 18:15.

En cada casilla de un tablero $ n\times n $hay un foco. Inicialmente todos los focos están apagados. En un paso, se permite cambiar el estado de todos los focos en una fila o de todos los focos en una columna (los focos prendidos se apagan y los focos apagados se prenden). Muestra que si después de cierta cantidad de pasos hay uno o más focos prendidos entonces en ese momento hay al menos n focos prendidos.

Problema

La amistad es una relación simétrica

Enviado por jmd el 11 de Octubre de 2010 - 11:27.

 En un grupo de personas, cada dos de ellas tiene exactamente un amigo en común en el grupo. Prueba que hay una persona que es amiga de todas las demás personas en el grupo. (Nota: la amistad es mutua, es decir, si X es amigo de Y, entonces Y es amigo de X.)

Problema

Combinatoria en el campamento

Enviado por jmd el 21 de Septiembre de 2010 - 18:44.

 En un campamento de verano que va a durar n semanas se quiere dividir el tiempo en $3$ períodos de manera que cada período empiece en un lunes y termine un domingo. El primer período se dedicará a labores artísticas, el segundo será para deportes y en el tercero se hará un taller tecnológico. Durante cada período se escogerá un lunes para que un experto en el tema del período dé una plática. Sea $C(n)$ el número de formas en que puede hacerse el calendario de actividades.

Problema

Cambios de estado en cuadrícula 6X6 --con luciérnagas

Enviado por jmd el 31 de Julio de 2010 - 06:38.

En cada cuadrado de una cuadrícula de $6\times6$ hay una luciérnaga apagada o encendida. Una movida es escoger tres cuadrados consecutivos, ya sean los tres verticales o los tres horizontales, y cambiar de estado a las tres luciérnagas que se encuentran en dichos cuadrados. (Cambiar de estado a una luciérnaga significa que si está apagada se enciende y si está encendida se apaga.) Muestra que si inicialmente hay una luciérnaga encendida y las demás apagadas, entonces no es posible hacer una serie de movidas tales que al final todas las luciérnagas estén apagadas.

Problema

Caballos en el tablero

Enviado por jmd el 31 de Julio de 2010 - 05:25.

Considera un tablero de ajedrez. Los números del 1 al 64 se escriben en las casillas del tablero como en la figura:

  1       2       3        4       5        6       7       8
  9     10     11     12     13     14     15     16
17     18     19     20     21     22     23     24

Distribuir contenido