Problemas - Geometría

Problema

Configuración con acutángulo isósceles

Enviado por jmd el 25 de Mayo de 2014 - 10:16.

2.5. Sea ABC un triángulo acutángulo isósceles con AC=BC. M y N son los puntos medios de AC y BC, respectivamente. La altura desde A corta a la prolongación de MN en X y la altura desde B corta a la prolongación de MN en Y. Z es la intersección de AY con BX. Además, sucede que los triángulos ABC y XYZ son semejantes. Determina la razón $\frac{AC}{AB}$.

Problema

Ángulo postgiro

Enviado por jmd el 25 de Mayo de 2014 - 10:10.

2.2. Sea ABCD un cuadrilátero que cumple: AB=AD,AC=BC+CD y los ángulos ABC y CDA suman 180 grados. El triángulo ABC se gira con centro en A formando el triángulo AB'C', como se muestra en la figura, hasta que el punto B' coincida con D, formándose el triángulo ADC'. Encuentra la medida del ángulo ACC'.

Problema

Isósceles inscrito en acutángulo

Enviado por jmd el 24 de Mayo de 2014 - 20:40.

1.6. Sean ABC un triángulo acutángulo, H su ortocentro y M el punto medio de BC. La perpendicular a MH por H corta a AB en L y a AC en N. Demuestra que LH=HN.

Problema

Razón de áreas en un hexágono

Enviado por jmd el 24 de Mayo de 2014 - 20:35.

1.3.  Sean ABCDEF un hexágono regular y M el punto medio del lado AB. Si O es el punto donde se cruzan los segmentos AD y ME ¿qué parte del área del hexágono es el área del triángulo OMD?

Problema

Ejercicio con rectángulo y punto medio

Enviado por jmd el 13 de Mayo de 2014 - 08:09.

En un rectángulo ABCD, M es el punto medio de BC. Si T es el pie de la perpendicular a AM bajada desde D demostrar que CT=CD.

 

Problema

Ejercicio con diámetro y cuerda perpendicular

Enviado por jmd el 13 de Mayo de 2014 - 04:58.

En un círculo de centro O, sean AB un diámetro, KM una cuerda perpendicular al diámetro AB y C el punto de intersección de la cuerda KM y el diámetro AB. ¿Cuál triángulo tiene mayor área, el BOK o el AOM?

Problema

Diagonales y triángulos de un cuadrado

Enviado por jmd el 13 de Mayo de 2014 - 04:54.

En un cuadrado ABCD, las diagonales AC y BD se cruzan en E. Si la diagonal AC mide 12 ¿cuál es el área del triángulo BCE?

Problema

Bisectriz en la mitad de un cuadrado

Enviado por jmd el 11 de Mayo de 2014 - 06:18.

Las diagonales de un cuadrado ABCD se cortan en E, la bisectriz del ángulo DBC corta a la diagonal AC en P y al lado CD en Q. Demostrar que DQ mide el doble que PE.

Problema

ONMAPS Tamaulipas 2014 - Problema 10

Enviado por jesus el 28 de Abril de 2014 - 09:11.

En el interior de un triángulo ABC se elige el punto P de tal manera que los ángulos PAC y PBC son iguales. Las perpendiculares desde P a BC y CA cortan estos lados en L y M, respectivamente. Si D es el punto medio de AB, demostrar que DL=DM.

Problema

Ostomachion, el cuadrado y sus partes

Enviado por jmd el 9 de Febrero de 2014 - 19:13.

En el cuadrado ABGD, sea E el punto medio de BG por el que levantamos la perpendicular EZ a BG (Z en AD). Trazaos las diagonales AG (del cuadrado) y BZ y ZG (de los rectángulos definidos por EZ en cuadrado). AG y BZ se cortan en F. Por el punto medio H de BE levantamos la perpendicular HT (T en BZ). Por H trazamos el segmento HK (K en BZ) de tal manera que H,K y A estén alineados. Trazamoe el segmento BM con M punto medio de AL. Con esto hemos dividido el rectángulo ABEZ en siete partes.