Geometría
Así o más congruentes
Sea un trapecio $ABCD$ de bases $AB$ y $CD$ , inscrito en una circunferencia de radio $O$. Sea $P$ la intersección de las rectas $AD$ y $BC$ . Una circunferencia por $O$ y $P$ corta a los segmentos $BC$ y $AD$ en puntos interiores $F$ y $G$ respectivamente. Muestre que $BF=DG$ .
Un problema guiado --de geometría
2.G. Sean ABC un triángulo isósceles con AB=AC, y P en AB y Q en AC puntostales que AP=CQ. Sea O la intersección de las mediatrices de PQ y AC.
a) Demostrar que APO y CQO son triángulos congruentes.
b) Demostrar que APOQ es un cuadrilátero cíclico.
c) Demostrar que AO es bisectriz del ángulo BAC.
(Nota: Para el inciso b puedes usar el resultado del a (sin demostración); para el cpuedes usar los resultados de a y b.)
Configuración con acutángulo isósceles
2.5. Sea ABC un triángulo acutángulo isósceles con AC=BC. M y N son los puntos medios de AC y BC, respectivamente. La altura desde A corta a la prolongación de MN en X y la altura desde B corta a la prolongación de MN en Y. Z es la intersección de AY con BX. Además, sucede que los triángulos ABC y XYZ son semejantes. Determina la razón $\frac{AC}{AB}$.
Ángulo postgiro
2.2. Sea ABCD un cuadrilátero que cumple: AB=AD,AC=BC+CD y los ángulos ABC y CDA suman 180 grados. El triángulo ABC se gira con centro en A formando el triángulo AB'C', como se muestra en la figura, hasta que el punto B' coincida con D, formándose el triángulo ADC'. Encuentra la medida del ángulo ACC'.
Isósceles inscrito en acutángulo
1.6. Sean ABC un triángulo acutángulo, H su ortocentro y M el punto medio de BC. La perpendicular a MH por H corta a AB en L y a AC en N. Demuestra que LH=HN.
Razón de áreas en un hexágono
1.3. Sean ABCDEF un hexágono regular y M el punto medio del lado AB. Si O es el punto donde se cruzan los segmentos AD y ME ¿qué parte del área del hexágono es el área del triángulo OMD?
Ejercicio con rectángulo y punto medio
En un rectángulo ABCD, M es el punto medio de BC. Si T es el pie de la perpendicular a AM bajada desde D demostrar que CT=CD.
Ejercicio con diámetro y cuerda perpendicular
En un círculo de centro O, sean AB un diámetro, KM una cuerda perpendicular al diámetro AB y C el punto de intersección de la cuerda KM y el diámetro AB. ¿Cuál triángulo tiene mayor área, el BOK o el AOM?
Diagonales y triángulos de un cuadrado
En un cuadrado ABCD, las diagonales AC y BD se cruzan en E. Si la diagonal AC mide 12 ¿cuál es el área del triángulo BCE?
Bisectriz en la mitad de un cuadrado
Las diagonales de un cuadrado ABCD se cortan en E, la bisectriz del ángulo DBC corta a la diagonal AC en P y al lado CD en Q. Demostrar que DQ mide el doble que PE.