Geometría
El extraño caso del hexágono azul
En un cuadrado $ABCD$ de lado $60$. $E,F,G$ y $H$ son puntos medios de $AB,BC;CD$ y $DA$, respectivamente. Encuentra el área del hexágono $IJKLMN$.
Problema 5. 29a Olimpiada Mexicana de Matemáticas
Sea $I$ el incentro de un triángulo acutángulo $ABC$. La recta $AI$ corta por segunda vez al circuncírculo del triángulo $BIC$ en $E$. Sean $D$ el pie de la altura desde $A$ sobre $BC$ y $J$ la reflexión de $I$ con respecto a $BC$. Muestra que los puntos $D$, $J$ y $E$ son colineales.
Problema 1. 29a Olimpiada Mexicana de Matemáticas
Sea $ABC$ un triángulo y sea $H$ su ortocentro. Sea $PQ$ un segmento que pasa por $H$ con $P$ en $AB$, $Q$ en $AC$ y tal que $\angle PHB=\angle CHQ$. Finalmente en el ciruncírculo del triángulo $ABC$ considera $M$ el punto medio del arco $BC$ que no contiene a $A$. Muestra que $MP=MQ$.
Problema 3(G)
Problema 1 - IMO 2015 - Conjunto de puntos y mediatrices.
Decimos que un conjunto finito $\cal{S}$ de puntos en el plano es equilibrado si para cada dos puntos distintos $A$ y $B$ en $\cal{S}$ hay un punto $C$ en $\cal{S}$ tal que $AC = BC$. Decimos que $\cal{S}$ es libre de centros si para cada tres puntos distintos $A$, $B$, $C$ en $\cal{S}$ no existe ningún punto $P$ en $\cal{S}$ tal que $PA=PB=PC$.
- Demostrar que para todo $n \geq 3$ existe un conjunto de $n$ puntos equilibrado.
- Determinar todos los enteros $n \geq 3$ para los que existe un conjunto de $n$ puntos equilibrado y libre de centros.
Problema geométrico --no tan trivial
Sea ABCD un cuadrado unitario. Con en A y radio AB se traza el arco BD. De manera similar, con centro en B y radio BA, se traza el arco AC. Calcular el radio r del círculo $\gamma$ que es tangente a los arcos AC y BD y al lado AB del cuadrado unitario.
Problema 11
Tres cuadrados idénticos $ABCD, AEFG, AHIJ$ (todos etiquetados en contra de las manecillas del reloj) tienen el vértice $A$ en común y los ángulos $JAB, DAE, GAH$ son iguales. Calcular el ángulo $GBH$
Uno de si y solo si, con reflexión
Sea $H$ el ortocentro y $G$ el gravicentro del triángulo acutángulo $\triangle ABC,$ con $ AB \neq AC.$ La linea $AG$ intersecta al circuncirculo de $\triangle ABC$ en $A$ y en $P$. Sea $P'$ la reflexión de $P$ en la línea $BC.$ Demuestra que $\angle CAB = 60°$ si y solo si $HG = GP'.$
El primero de la EGMO
Sea $\triangle ABC$ un triángulo acutángulo, y sea $D$ el pie de la altura trazada desde $C$. La bisectriz de $\angle ABC$ intersecta a $CD$ en $E$ y vuelve a intersectar al circuncírculo $\omega$ de $\triangle ADE$ en $F$. Si $\angle ADF = 45°$, muestra que $CF$ es tangente a $\omega$.
Trapecio Isósceles circunscrito a una circunferencia
Un trapecio Isósceles ABCD esta circunscrito a una circunferencia, sus bases miden 4mts y 9mts. Hallar el área del trapecio.