Números
P2. Producto de primos y MCD.
Los conjuntos $A, \ B, \ C$ y $D$ cumplen las siguientes condiciones:
- Sus elementos son números enteros del 1 al 20.
- Cada conjunto tiene 4 elementos y no hay un mismo número en dos o más conjuntos distintos.
- Sean $P_a, \ P_b, \ P_c, \ P_d$ los productos de los números en los conjuntos $A, B, C, D$ respectivamente, y $Q_a, Q_b, Q_c, Q_d$ el producto de los factores primos distintos de $P_a, P_b, P_c, P_d$ respectivamente.
Se cumple que:
$$P_a \cdot P_b = P_c \cdot P_d$$
$$mcd(Q_a,Q_b)\cdot mcd(Q_c,Q_d) \leq 3$$
¿De cuántas maneras se pueden elegir los conjuntos?
P1. Desperdiciando agua en garrafones infinitos
Luna y sus amigas estan jugando con agua. Tienen $n$ garrafones vacíos de capacidad infinita y $m$ botellas llenas de agua, con $m>n$. Las botellas están ordenadas y numeradas $1, 2, \dots, m$, de la más pequeña a la más grande. La botella $i$ tarda exactamente $i$ segundos en vaciarse, para $1 \leq i \leq m$. Sus amigas van a vaciar el agua de las botellas en los garrafones siguiendo estas reglas:
P4. Numero primo vs cubo perfecto
Sea $p$ un número primo (positivo). El número $16p + 1$ es un cubo perfecto. ¿Cuáles son los posibles valores para $p$?
P2. Divisores consecutivos
Determina todas las parejas de enteros $(a, b)$ que satisfacen:
- $5 \leq b < a$
- Existe un número natural $n$ tal que los números $\frac{a}{b}$ y $a-b$ son divisores consecutivos de $n$, en ese orden. Es decir, que no existe un divisor $d$ de $n$ tal que $\frac{a}{b} < d < a-b$
P6. La lista de Germán
Sea $n$ un entero positivo. Germán tiene una lista de $n$ números enteros. Si suma todos sus números, obtiene 6. Si los multiplica, también obtiene 6. Encuentra todos los posibles valores para $n$.
P1. Repaso de la cantidad de divisores de un número.
2.- Ecuación de ternas en progresión Geométrica
Determina todas las ternas de números naturales $(a,b,c)$ con $0<a<b<c$ en progresión geométrica para las cuales se cumplen las siguientes dos ecuaciones:
$$a+b+c=35$$
$$a^2+b^2+c^2=525$$
P2. Números parciales y totales
Para cualquier número natural, llamemos ``números parciales'' a los números formados por sus dígitos. Por ejemplo, los números parciales de 149 son 1, 4, 9, 14, 19, 49 y 149, y los números parciales de 313 son 3, 1, 31, 33, 13 y 313. Un número natural es ``totalmente primo'' si todos sus ``números parciales'' son números primos. Encuentra todos los números ``totalmente primos''.
P8. Al menos $n-2$ enteros primos en la secuencia $2^kn$
Encuentra todos los enteros positivos $n$ tales que los $n$ números \[2n+1, \quad 2^2n+1,\quad \dots,\quad 2^nn+1\] se tiene que $n$, $n-1$ o $n-2$ de ellos son números primos.
P2. Papelitos con números y fracciones con raíces cuadradas racionales.
Se tienen 50 papelitos con los números del 1 al 50. Se quieren tomar 3 papelitos de tal manera que a cualquiera de los 3 números, dividido entre el máximo común divisor de los otros dos, se le puede sacar la raíz cuadrada de tal manera que quede un número racional.
¿Cuántas tercias (no ordenadas) de papelitos cumplen esta condición?
Nota: Un número es racional si se puede escribir como la división de 2 enteros.
