Avanzado

Problemas de nivel nacional.
Problema

Divisibilidad de un polinomio

Enviado por jmd el 9 de Diciembre de 2011 - 18:59.

Sea $f(x) = (x + b)^2 - c$, un polinomio con $b$ y $c$ números enteros.

  • a) Si $p$ es un número primo tal que $p$ divide a $c$ y $p^2$ no divide a $c$, demostrar que, cualquiera que sea el número entero $n$, $p^2$ no divide a $f(n)$.
  • b) Sea $q$ un número primo, distinto de 2, que divide a $c$. Si $q$ divide a $f(n)$ para algún número entero $n$, demostrar que para cada entero positivo $r$ existe un número entero $n'$ tal que $q^r$ divide a $f(n')$.
Problema

Una función recursiva

Enviado por jmd el 9 de Diciembre de 2011 - 18:55.

Sea $f$ una función, definida en el conjunto de los enteros mayores o iguales que cero, que verifica las dos condiciones siguientes:

  • (I) Si $n = 2^j -1$, para $n = 0, 1, 2,\ldots$, entonces $f(n)=0$
  • (II) Si $n\neq 2^j-1, para n = 0, 1, 2,\ldots, entonces $f(n+1) = f(n) -1$.

a) Demostrar que para todo entero $n$, mayor o igual que cero, existe un entero $k$, mayor que cero, tal que $f(n)+n= 2^k - 1$
b) Calcular $f (2^{1990})$

Problema

Soluciones infinitas

Enviado por jmd el 9 de Diciembre de 2011 - 12:09.

 Mostrar que hay una infinidad de pares de números naturales que satisfacen la ecuación
2x^2 - 3x = 3y^2: $$2x^2 -3x + 1 =3y^2 + y$$

Problema

Rango de una función

Enviado por jmd el 9 de Diciembre de 2011 - 12:03.

Sea la función $f$ definida sobre el conjunto $\{1, 2, 3,\ldots\}$ tal que
$$f(1) = 1$$
$$f(2n + 1) = f(2n) +1$$
$$f(2n) = 3f(n)$$
Determinar el conjunto de valores que toma $f$

Problema

Una propiedad del incentro

Enviado por jmd el 9 de Diciembre de 2011 - 11:56.

La circunferencia inscrita en el triángulo $ABC$, es tangente a los lados $AB$ y $AC$ en los puntos $M$ y $N$, respectivamente. Las bisectrices de $A$ y $B$ intersecan a $MN$ en los puntos $P$ y $Q$, respectivamente. Sea $O$ el incentro del triángulo $ABC$. Probar que $MP\cdot OA = BC\cdot OQ$

Problema

Desigualdad sobre los lados de un triángulo

Enviado por jmd el 9 de Diciembre de 2011 - 11:54.

Sean $a, b, c$ las longitudes de los lados de un triángulo. Probar que:
$$|\frac{a-b}{a+b}+\frac{b-c}{b´c}+\frac{c-a}{ca}|<\frac{1}{16}$$

Problema

Desigualdad trigonométrica

Enviado por jmd el 9 de Diciembre de 2011 - 11:50.

Sean $x, y, z$ tres números reales tales que $0 < x < y < z < \pi/2$. Demostrar la desigualdad:
$$\pi/2 + 2\sin x\cos y + 2\sin y \cos z\gt \sin 2x + \sin 2y + \sin 2z$$

 

Problema

Sistema no lineal de ecuaciones

Enviado por jmd el 9 de Diciembre de 2011 - 11:44.

Determinar todas las ternas de números reales que satisfacen el sistema de
ecuaciones siguiente:
\begin{eqnarray*}
x + y - z &=& -1\\
x^2 - y^2 + z^2 &=& 1\\
-x^3 + y^3 + z^3 &=& -1
\end{eqnarray*}

Problema

Sucesión libre de promedios

Enviado por jmd el 8 de Diciembre de 2011 - 21:59.

Considere los conjuntos de $n$ números naturales diferentes de cero en los cuales no hay tres elementos en progresión aritmética. Demuestre que, en uno de esos conjuntos, la suma de los inversos de sus elementos es máximo.

 

Problema

Ejercicio no trivial en álgebra

Enviado por jmd el 8 de Diciembre de 2011 - 21:56.

Considere las expresiones de la forma $x + yt + zt^2$, con $x, y, z$ números racionales, y $t^3=2$. Demuestre que si $x + yt +zt^2\neq 0$, entonces existen $u, v, w$ racionales tales que $(x + yt + z^2)(u + vt + wt^2)= 1$

 

Distribuir contenido