Básico

Problemas de nivel pre-estatal.
Problema

Progresión aritmética con un cuadrado

Enviado por jmd el 21 de Agosto de 2009 - 19:06.

Demostrar que si una progresión aritmética de enteros positivos contiene un cuadrado perfecto entonces contiene infinitamente muchos cuadrados perfectos.

Problema

Los primos no se factorizan... excepto en la forma 1( p )

Enviado por jmd el 21 de Agosto de 2009 - 09:58.

Encontrar todos los enteros positivos n tales que $n^{20}+n^{10}+1$ es un primo.

Problema

Semicírculo y la descomposición en dos sumandos de un segmento.

Enviado por arbiter-117 el 16 de Agosto de 2009 - 23:18.

Sea $$BC$ el diametro de una semicirculo y sea $A$ el punto medio del semicirculo. Sea M un punto sobre el arco $AC$. Seam $P$ y $Q$ los pies de las perpendiculares desde $A$ y C a la linea $BM$, respectivamente.

Demustra que $BP=PQ+QC$

Problema

Áreas enteras de triángulos

Enviado por jmd el 15 de Agosto de 2009 - 05:59.

El área del triángulo $ ABC $ es un entero. Sobre los lados $ BC$ y $AC$ se eligen los puintos $X$ y $Y$, respectivamente. Los segmentos $AX$ y $ BY$ se cortan en un punto $P$ dentro del triángulo $ ABC $. El área de $BPX$ es 1, la de $APY$ es 2, y la de $APB$ es un entero. Encontrar el área del triángulo $ABC.$

Problema

Biblioteca

Enviado por jmd el 15 de Agosto de 2009 - 05:54.

En mi biblioteca hay 5 libros de álgebra, 6 de combinatoria, y 8 de geometría, y todos son diferentes.
a) ¿De cuántas formas puedo elegir dos?
b) ¿De cuántas formas puedo elegir dos del mismo tema?
c) ¿De cuántas formas puedo elegir dos pero que no sean del mismo tema?

Problema

Una propiedad trivial de la potencia de un punto

Enviado por jmd el 26 de Julio de 2009 - 08:05.

Sean dados tres puntos distintos O, P, Q en el plano. Demostrar que OP=OQ si y sólo si P y Q tienen la misma potencia respecto a un círculo cualquiera con centro en O.

Problema

Problema 5(N)

Enviado por jmd el 21 de Julio de 2009 - 11:00.

El alumno menos aventajado del salón canceló el 6 en 16/64 y obtuvo 1/4 --la respuesta correcta. Encontrar todos los pares de números de dos cifras ab, bc tales que ab/bc=a/c --con a,b,c dígitos diferentes. (Es decir, todos los casos en que este alumno podría acertar con su método al simplificar quebrados de dos cifras.)

Problema

Encontrar el término n de una sucesión

Enviado por jmd el 19 de Julio de 2009 - 13:48.

Considere la sucesión $a_1=1$ y, para $ n $ mayor que 1, $a_n=1+2a_{n-1}.$ Encontrar una fórmula para el término n-ésimo y demostrarla por inducción.

Problema

Potencia de un punto y circunferencias ortogonales

Enviado por jmd el 18 de Julio de 2009 - 07:19.

Sean dados una circunferencia c de radio r y centro O, y dos puntos M y M' tales que $OM\cdot OM'=r^2$ (i.e., inversos uno del otro respecto a c). Demostrar que cualquier circunferencia c' que pase por M y M' es ortogonal a c.

Problema

Condición necesaria y suficiente para cíclicos

Enviado por jmd el 18 de Julio de 2009 - 07:03.

Sea PQRS un cuadrilátero tal que sus lados opuestos PR y QS se cortan en un punto T. Demostrar que PQRS es cuadrilátero cíclico si y sólo si $TR\cdot TP=TS\cdot TQ.$

 

Distribuir contenido